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THE MOLECULAR CHALLENGE

Sir Ethylene, to scientists fair prey,

(Who dig and delve and peek and push and pry,

And prove their findings with equations sly)

Smoothed out his ruffled orbitals, to say:

“l stand in symmetry. Mine is a way

Of mystery and magic. Ancient, |

Am also deemed immortal. Should I die,

Pi would be in the sky, and Judgement Day

Would be upon us. For all things must fail,

That hold our universe together, when

Bonds such as bind me fail, and fall asunder.

Hence, stand | firm against the endless halil

Of scientific blows. | yield not.” Men

And their computers stand and stare and wonder.
W.G. LOWE
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Preface to the Third Edition

We have attempted to improve and update this text while retaining the features that
make it unique, namely, an emphasis on physical understanding, and the ability to
estimate, evaluate, and predict results without blind reliance on computers, while still
maintaining rigorous connection to the mathematical basis for quantum chemistry. We
have inserted into most chapters examples that allow important points to be emphasized,
clarified, or extended. This has enabled us to keep intact most of the conceptual
development familiar to past users. In addition, many of the chapters now include
multiple choice questions that students are invited to solve in their heads. This is not
because we think that instructors will be using such questions. Rather it is because we
find that such questions permit us to highlight some of the definitions or conclusions
that students often find most confusing far more quickly and effectively than we can
by using traditional problems. Of course, we have also sought to update material
on computational methods, since these are changing rapidly as the field of quantum
chemistry matures.

This book is written for courses taught at the first-year graduate/senior undergraduate
levels, which accounts for its implicit assumption that many readers will be relatively
unfamiliar with much of the mathematics and physics underlying the subject. Our
experience over the years has supported this assumption; many chemistry majors are
exposed to the requisite mathematics and physics, yet arrive at our courses with poor
understanding or recall of those subjects. That makes this course an opportunity for
such students to experience the satisfaction of finally seeing how mathematics, physics,
and chemistry are intertwined in quantum chemistry. Itis for this reason that treatments
of the simple and extended Hiickel methods continue to appear, even though these are no
longer the methods of choice for serious computations. These topics nevertheless form
the basis for the way most non-theoretical chemists understand chemical processes,
just as we tend to think about gas behavior as “ideal, with corrections.”

XVii
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Preface to the Second Edition

The success of the first edition has warranted a second. The changes | have made reflect
my perception that the book has mostly been used as a teaching text in introductory
courses. Accordingly, I have removed some of the material in appendixes on mathemat-
ical details of solving matrix equations on a computer. Also | have removed computer
listings for programs, since these are now commonly available through commercial
channels. | have added a new chapter on MO theory of periodic systems—a subject
of rapidly growing importance in theoretical chemistry and materials science and one
for which chemists still have difficulty finding appropriate textbook treatments. | have
augmented discussion in various chapters to give improved coverage of time-dependent
phenomena and atomic term symbols and have provided better connection to scatter-
ing as well as to spectroscopy of molecular rotation and vibration. The discussion
on degenerate-level perturbation theory is clearer, reflecting my own improved under-
standing since writing the first edition. There is also a new section on operator methods
for treating angular momentum. Some teachers are strong adherents of this approach,
while others prefer an approach that avoids the formalism of operator techniques. To
permit both teaching methods, | have placed this material in an appendix. Because this
edition is more overtly a text than a monograph, | have not attempted to replace older
literature references with newer ones, except in cases where there was pedagogical
benefit.

A strength of this book has been its emphasis on physical argument and analogy (as
opposed to pure mathematical development). | continue to be a strong proponent of
the view that true understanding comes with being able to “see” a situation so clearly
that one can solve problems in one’s head. There are significantly more end-of-chapter
problems, a number of them of the “by inspection” type. There are also more questions
inviting students to explain their answers. | believe that thinking about such questions,
and then reading explanations from the answer section, significantly enhances learning.

It is the fashion today to focus on state-of-the-art methods for just about everything.
The impact of this on education has, | feel, been disastrous. Simpler examples are often
needed to develop the insight that enables understanding the complexities of the latest
techniques, but too often these are abandoned in the rush to get to the “cutting edge.”
For this reason | continue to include a substantial treatment of simypt&edi theory.

It permits students to recognize the connections between MOs and their energies and
bonding properties, and it allows me to present examples and problems that have max-
imum transparency in later chapters on perturbation theory, group theory, qualitative
MO theory, and periodic systems. | find simplai¢kél theory to be educationally
indispensable.

Xix



XX Preface to the Second Edition

Much of the new material in this edition results from new insights | have developed
in connection with research projects with graduate students. The work of all four of
my students since the appearance of the first edition is represented, and | am delighted
to thank Sherif Kafafi, John LaFemina, Maribel Soto, and Deb Camper for all | have
learned from them. Special thanks are due to Professor Terry Carlton, of Oberlin
College, who made many suggestions and corrections that have been adopted in the
new edition.

Doubtless, there are new errors. | would be grateful to learn of them so that future
printings of this edition can be made error-free. Students or teachers with comments,
questions, or corrections are more than welcome to contact me, either by mail at the
Department of Chemistry, 152 Davey Lab, The Pennsylvania State University, Univer-
sity Park, PA 16802, or by e-mail directed to JL3 at PSUVM.PSU.EDU.
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Preface to the First Edition

My aim in this book is to present a reasonably rigorous treatment of molecular orbital
theory, embracing subjects that are of practical interest to organic and inorganic as well
as physical chemists. My approach here has been to rely on physical intuition as much
as possible, first solving a number of specific problems in order to develop sufficient
insight and familiarity to make the formal treatment of Chapter 6 more palatable. My
own experience suggests that most chemists find this route the most natural.

| have assumed that the reader has at some time learned calculus and elementary
physics, but | have not assumed that this material is fresh in his or her mind. Other
mathematics is developed as it is needed. The book could be used as a text for under-
graduate or graduate students in a half or full year course. The level of rigor of the book
is somewhat adjustable. For example, Chapters 3 and 4, on the harmonic oscillator and
hydrogen atom, can be truncated if one wishes to know the nature of the solutions, but
not the mathematical details of how they are produced.

I have made use of appendixes for certain of the more complicated derivations or
proofs. This is done in order to avoid having the development of major ideas in the
text interrupted or obscured. Certain of the appendixes will interest only the more
theoretically inclined student. Also, because | anticipate that some readers may wish
to skip certain chapters or parts of chapters, | have occasionally repeated information
so that a given chapter will be less dependent on its predecessors. This may seem
inelegant at times, but most students will more readily forgive repetition of something
they already know than an overly terse presentation.

| have avoided early usage of bra-ket notation. | believe that simultaneous intro-
duction of new concepts and unfamiliar notation is poor pedagogy. Bra-ket notation is
used only after the ideas have had a change to jell.

Problem solving is extremely important in acquiring an understanding of quantum
chemistry. | have included a fair number of problems with hints for a few of them in
Appendix 14 and answers for almost all of them in AppendixX 15.

It is inevitable that one be selective in choosing topics for a book such as this. This
book emphasizes ground state MO theory of molecules more than do most introductory
texts, with rather less emphasis on spectroscopy than is usual. Angular momentum
is treated at a fairly elementary level at various appropriate places in the text, but
it is never given a full-blown formal development using operator commutation rela-
tions. Time-dependent phenomena are not included. Thus, scattering theory is absent,

1in this Second Edition, these Appendices are numbered Appendix 12 and 13.

XXi



XXii Preface to the First Edition

although selection rules and the transition dipole are discussed in the chapter on time-
independent perturbation theory. Valence-bond theory is completely absent. If | have
succeeded in my effort to provide a clear and meaningful treatment of topics relevant to
modern molecular orbital theory, it should not be difficult for an instructor to provide
for excursions into related topics not covered in the text.

Over the years, many colleagues have been kind enough to read sections of the
evolving manuscript and provide corrections and advice. | especially thank L. P. Gold
and O. H. Crawford, who cheerfully bore the brunt of this task.

Finally, I would like to thank my father, Wesley G. Lowe, for allowing me to include
his sonnet, “The Molecular Challenge.”



Chapter 1

Classical Waves
and the Time-Independent
Schriodinger Wave Equation

D 1-1 Introduction

The application of quantum-mechanical principles to chemical problems has revolu-
tionized the field of chemistry. Today our understanding of chemical bonding, spectral
phenomena, molecular reactivities, and various other fundamental chemical problems
rests heavily on our knowledge of the detailed behavior of electrons in atoms and
molecules. In this book we shall describe in detail some of the basic principles,
methods, and results of quantum chemistry that lead to our understanding of electron
behavior.

Inthe first few chapters we shall discuss some simple, butimportant, particle systems.
This will allow us to introduce many basic concepts and definitions in a fairly physical
way. Thus, some background will be prepared for the more formal general development
of Chapter 6. In this first chapter, we review briefly some of the concepts of classical
physics as well as some early indications that classical physics is not sufficient to explain
all phenomena. (Those readers who are already familiar with the physics of classical
waves and with early atomic physics may prefer to jump ahead to Section 1-7.)

[ J 1-2 Waves
1-2.A Traveling Waves

A very simple example of a traveling wave is provided by cracking a whip. A pulse of
energy is imparted to the whipcord by a single oscillation of the handle. This results
in a wave which travels down the cord, transferring the energy to the popper at the end
of the whip. In Fig. 1-1, an idealization of the process is sketched. The shape of the
disturbance in the whip is called teave profileand is usually symbolizeg (x). The

wave profile for the traveling wave in Fig. 1-1 shows where the energy is located at a
given instant. It also contains the information needed to tell how much energy is being
transmitted, because the height and shape of the wave reflect the vigor with which the
handle was oscillated.
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Figure 1-1 » Cracking the whip. As time passes, the disturbance moves from left to right along
the extended whip cord. Each segment of the cord oscillates up and down as the disturbance passes
by, ultimately returning to its equilibrium position.

The feature common to all traveling waves in classical physics is that energy is trans-
mitted through a medium. The medium itself undergoes no permanent displacement;
it merely undergoes local oscillations as the disturbance passes through.

One of the most important kinds of wave in physics isheemonicwave, for which
the wave profile is a sinusoidal function. A harmonic wave, at a particular instantintime,
is sketched in Fig. 1-2. The maximum displacement of the wave from the rest position
is theamplitudeof the wave, and thevavelengtht is the distance required to enclose
one complete oscillation. Such a wave would result from a harmascillation at
one end of a taut string. Analogous waves would be produced on the surface of a quiet
pool by a vibrating bob, or in air by a vibrating tuning fork.

At the instant depicted in Fig. 1-2, the profile is described by the function

Y(x)=Asin(2rx/\) (1-1)

(¥ =0 whenx =0, and the argument of the sine function goes from Ortpeéhcom-
passing one complete oscillatiomagoes from 0 ta..) Let us suppose that the situation
in Fig. 1-2 pertains at the time=0, and let the velocity of the disturbance through the
medium bec. Then, after time, the distance traveled s, the profile is shifted to the
right by ¢t and is now given by

W(x,t)=ASIN[(2r/A)(x —ct)] (1-2)

Figure 1-2 » A harmonic wave at a particular instant in time. A is the amplitude &g the
wavelength.

1A harmonic oscillation is one whose equation of motion has a sine or cosine dependence on time.
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A capital ¥ is used to distinguish the time-dependent function (1-2) from the time-
independent function (1-1).

Thefrequency of a wave is the number of individual repeating wave units passing
a point per unit time. For our harmonic wave, this is the distance traveled in unit time
¢ divided by the length of a wave urit Hence,

v=c/A (1-3)
Note that the wave described by the formula
W (x,t)=Asin[(2r /1) (x —ct) + €] (1-4)

is similar tow of Eq. (1-2) except for being displaced. If we compare the two waves
at the same instant in time, we finl' to be shifted to the left oft by ex/2x. If
e=m,3m,...,thenV’ is shifted byr/2, 31/2, ... and the two functions are said to be
exactly out of phase. ¥ =2x,4mr, ..., the shiftis byx, 24, ..., and the two waves
are exactly in phase: is thephase factorfor ¥’ relative tow. Alternatively, we can
compare the two waves at the same point iin which case the phase factor causes
the two waves to be displaced from each other in time.

1-2.B Standing Waves

In problems of physical interest, the medium is usually subject to constraints. For
example, a string will have ends, and these may be clamped, as in a violin, so that
they cannot oscillate when the disturbance reaches them. Under such circumstances,
the energy pulse is unable to progress further. It cannot be absorbed by the clamping
mechanismif it is perfectly rigid, and it has no choice but to travel back along the string

in the opposite direction. The reflected wave is now moving into the face of the primary
wave, and the motion of the string is in response to the demands placed on it by the two
simultaneous waves:

W (x, 1) = Wprimary(x, ) + Yreflected X, 1) (1-5)

When the primary and reflected waves have the same amplitude and speed, we can
write

W(x, 1) = ASiN[(27/2)(x — ct)] + ASin[(27/2) (x + ct)]
= 24 sin(2rx/A) cog2mct /M) (1-6)

This formula describesstanding wave-a wave that does not appear to travel through
the medium, but appears to vibrate “in place.” The first part of the function depends
only on thex variable. Wherever the sine function vanish&syill vanish, regardless

of the value oft. This means that there are places where the medium does not ever
vibrate. Such places are calleddes Between the nodes, g@rx/A) is finite. As

time passes, the cosine function oscillates between plus and minus unity. This means
that ¥ oscillates between plus and minus the value of&itx /). We say that the-
dependent part of the function gives the maximum displacement of the standing wave,
and ther-dependent part governs the motion of the medium back and forth between
these extremes of maximum displacement. A standing wave with a central node is
shown in Fig. 1-3.
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Figure 1-3 » A standing wave in a string clamped»xat 0 andx = L. The wavelength. is equal
toL.

Equation (1-6) is often written as
Y(x, 1) =y (x)coswr) (1-7)
where
w=2mc/r (1-8)

The profiley (x) is often called themplitude functiorandw is thefrequency factar

Let us consider how the energy is stored in the vibrating string depicted in Fig. 1-3.
The string segments at the central node and at the clamped endpoints of the string
do not move. Hence, their kinetic energies are zero at all times. Furthermore, since
they are never displaced from their equilibrium positions, their potential energies are
likewise always zero. Therefore, the total energy stored at these segments is always
zero as long as the string continues to vibrate in the mode shown. The maximum kinetic
and potential energies are associated with those segments located at the wave peaks
and valleys (called thantinode} because these segments have the greatest average
velocity and displacement from the equilibrium position. A more detailed mathematical
treatment would show that the total energy of any string segment is proportional to
¥ (x)? (Problem 1-7).

1-3 The Classical Wave Equation

Itis one thing to draw a picture of a wave and describe its properties, and quite another
to predict what sort of wave will result from disturbing a particular system. To make
such predictions, we must consider the physical laws that the medium must obey. One
condition is that the medium must obey Newton’s laws of motion. For example, any
segment of string of masssubjected to a forc€ must undergo an acceleration®fm

in accord with Newton’s second law. In this regard, wave motion is perfectly consistent
with ordinary particle motion. Another condition, however, peculiar to waves, is that
each segment of the medium is “attached” to the neighboring segments so that, as
it is displaced, it drags alonigs neighbor, which in turn drags along its neighbor,
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Figure 1-4 » A segment of string under tensidin. The forces at each end of the segment are
decomposed into forces perpendicular and parallel to

etc. This provides the mechanism whereby the disturbance is propagated along the
medium?

Let us consider a string under a tensile fofteWhen the string is displaced from
its equilibrium position, this tension is responsible for exerting a restoring force. For
example, observe the string segment associated with the region+ dx in Fig. 1-4.
Note that the tension exerted at either end of this segment can be decomposed into
components parallel and perpendicular tothexis. The parallel component tends to
stretch the string (which, however, we assume to be unstretchable), the perpendicular
component acts to accelerate the segment toward or away from the rest position. At
the right end of the segment, the perpendicular compoReattided by the horizontal
component gives the slope @. However, for small deviations of the string from
equilibrium (that is, for small angle) the horizontal component is nearly equal in
length to the vectof’. This means that it is a good approximation to write

slope of vectoll = F/T atx +dx (2-9)
But the slope is also given by the derivativedfand so we can write
Fiyax=T (aq}/ax)x—i-dx (1'10)

At the other end of the segment the tensile force acts in the opposite direction, and we
have

Fe=—T(0W/3x), (1-11)
The net perpendicular force on our string segment is the resultant of these two:
F=T [(a\l”/ax)x-‘rdx - (a\p/ax)x] (1-12)

The difference in slope at two infinitesimally separated points, dividedxgyis by
definition the second derivative of a function. Therefore,

F=T%V/dx’dx (1-13)

2F|uids are of relatively low viscosity, so the tendency of one segment to drag along its neighbor is weak. For
this reason fluids are poor transmitterdrainsversavaves (waves in which the medium oscillates in a direction
perpendicular to the direction of propagation).cbmpressionvaves, one segment displaces the next by pushing
it. Here the requirement is that the medium possess elasticity for compression. Solids and fluids often meet this
requirement well enough to transmit compression waves. The ability of rigid solids to transmit both wave types
while fluids transmit only one type is the basis for using earthquake-induced waves to determine how deep the
solid part of the earth’s mantle extends.
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Equation (1-13) gives the force on our string segment. If the string has mass
unit length, then the segment has masérx, and Newton’s equatiof’ = ma may be
written

T 0%W/0x%=m 3°W /31> (1-14)

where we recall thatacceleration is the second derivative of position with respecttotime.

Equation (1-14) is the wave equation for motion in a string of uniform density
under tensiorf". It should be evident that its derivation involves nothing fundamental
beyond Newton’s second law and the fact that the two ends of the segment are linked
to each other and to a common tensile force. Generalizing this equation to waves in
three-dimensional media gives

32 92 2 %W (x, ,2,1)
(WJFB 2+82>\Il(x,y,z,t)=,BT (1-15)

whereg is a composite of physical quantities (analogous:#d") for the particular
system.

Returning to our string example, we have in Eq. (1-1diree-dependerdifferential
equation. Suppose we wish to limit our consideration to standing waves that can be
separated into a space-dependent amplitude function and a harmonic time-dependent
function. Then

W(x,t) =1 (x) coqwt) (1-16)
and the differential equation becomes

d%y (x) m d?cogwt)

CosN) — o = T () — —n—;W(x)wzcos(wt) (1-17)

or, dividing by cosw?),
d?y (x)/dx? = —(&?m/ Ty (x) (1-18)

This is the classicdlme-independenwvave equation for a string.

We can see by inspection what kind of functigiix) must be to satisfy Eq. (1-18).
Y is a function that, when twice differentiated, is reproduced with a coefficient of
—w?m/T. One solution is

1//=Asin<a) m/Tx) (1-19)

This illustrates that Eq. (1-18) has sinusoidally varying solutions such as those discussed
in Section 1-2. Comparing Eqg. (1-19) with (1-1) indicates thay 2= w/m/T.
Substituting this relation into Eq. (1-18) gives

d?y (x)/dx? = — (27 /2)? ¥ (x) (1-20)

which is a more useful form for our purposes.
For three-dimensional systems, the classical time-independent wave equation for an
isotropic and uniform medium is

(32/0x%+0%/0y% + 3%/022)Y (x, v, 2) = — (27 V)Y (x, », 2) (1-21)
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wherei depends on the elasticity of the medium. The combination of partial derivatives
on the left-hand side of Eq. (1-21) is called tbegplacian and is often given the short-
hand symboWV? (del squared). This would give for Eq. (1-21)

V2 (x, y,2) = = /MY (x, y, 2) (1-22)

D 1-4 Standing Waves in a Clamped String

We now demonstrate how Eq. (1-20) can be used to predict the nature of standing waves
in a string. Suppose that the string is clamped at0 andZ. This means that the
string cannot oscillate at these points. Mathematically this means that

V(O =y(L)=0 (1-23)

Conditions such as these are calleolindary conditions Our question is, “What
functionsy satisfy Eq. (1-20) and also Eq. (1-23)?” We begin by trying to find the most
general equation that can satisfy Eq. (1-20). We have already see#ighgPrx /A)

is a solution, but it is easy to show thatog2rx /1) is also a solution. More general
than either of these is the linear combinafion

¥ (x) = Asin(2rx/A) + Bcos2mx/A) (1-24)

By varying 4 and B, we can get different functiong.

There are two remarks to be made at this point. First, some readers will have
noticed that other functions exist that satisfy Eq. (1-20). Thesedaex2rix /1)
and 4 exp(—2rix /1), wherei = /—1. The reason we have not included these in
the general function (1-24) is that these two exponential functions are mathematically
equivalent to the trigonometric functions. The relationship is

exp(ikx) =cogkx) i sin(kx). (1-25)

This means that any trigonometric function may be expressed in terms of such exponen-
tials and vice versa. Hence, the set of trigonometric functions and the set of exponentials
is redundant, and no additional flexibility would result by including exponentials in
Eq. (1-24) (see Problem 1-1). The two sets of functiondinearly dependent

The second remark is that for a givdrand B the function described by Eq. (1-24)
is a single sinusoidal wave with wavelengthBy altering the ratio of to B, we cause
the wave to shift to the left or right with respect to the origin4l& 1 andB =0, the
wave has a node at=0. If 4 =0 andB =1, the wave has an antinodexat 0.

We now proceed by letting the boundary conditions determine the congtants.
The condition atkt =0 gives

¥ (0) = A4sin(0) + Bcog0)=0 (1-26)

3Given functionsf1, f2, f3... . A linear combinatiorof these functions i1 /1 + ¢ f> + ¢3 f3+ - - -, where
c1,¢2,c3, ... are numbers (which need not be real).

4If one member of a set of functiongy(, /2, 13, ...) can be expressed as a linear combination of the remaining
functions (i.e., if 1 =c2 f2 + c3 f3+- - -), the set of functions is said to be linearly dependent. Otherwise, they
are linearly independent.
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However, since sif®) = 0 and cof0) =1, this gives
B=0 (1-27)
Therefore, our first boundary condition forcB<o be zero and leaves us with
¥ (x) = Asinrx/A) (1-28)
Our second boundary condition,at L, gives
V(L)=Asin2rL/7)=0 (1-29)

One solutionis provided by settinequal to zero. This giveg =0, which corresponds

to no wave at all in the string. This is possible, but not very interesting. The other
possibilityisfor2r L /L tobe equalto04-n, 27, ... , £nm, ... since the sine function
vanishes then. This gives the relation

2nL/h=nw, n=0,4+1,+2, ... (1-30)
or
A=2L/n, n=0,%1,+£2 ... (2-31)
Substituting this expression farinto Eq. (1-28) gives
Yv(x)=Asin(nerx/L), n=0,+1 42, ... (1-32)

Some of these solutions are sketched in Fig. 1-5. The solution£d® is again the
uninterestingy = 0 case. Furthermore, since 6ix) equals—sin(x), it is clear that
the set of functions produced by positive integers n is not physically different from the
set produced by negatiwe so we may arbitrarily restrict our attention to solutions with
positiver. (The two sets are linearly dependent.) The constaststill undetermined.

It affects the amplitude of the wave. To determihwvould require knowing how much
energy is stored in the wave, that is, how hard the string was plucked.

It is evident that there are an infinite number of acceptable solutions, each one
corresponding to a different number of half-waves fitting between Qariglt an even
larger infinity of waves has been excluded by the boundary conditions—namely, all
waves having wavelengths not divisible intb @n integral number of times. The result

Figure 1-5 » Solutions for the time-independent wave equation in one dimension with boundary
conditionsy (0) = (L) =0.



Section 1-5 Light as an Electromagnetic Wave 9

of applying boundary conditions has been to restrict the allowed wavelengths to certain
discrete values. As we shall see, this behavior is closely related to the quantization of
energies in quantum mechanics.

The example worked out above is an extremely simple one. Nevertheless, it demon-
strates how a differential equation and boundary conditions are used to define the
allowed states for a system. One could have arrived at solutions for this case by simple
physical argument, but this is usually not possible in more complicated cases. The dif-
ferential equation provides a systematic approach for finding solutions when physical
intuition is not enough.

D 1-5 Light as an Electromagnetic Wave

Suppose a charged particle is caused to oscillate harmonically arettis. If there

is another charged particle some distance away and initially at rest imtipdane,

this second particle will commence oscillating harmonically too. Thus, energy is being
transferred from the first particle to the second, which indicates that there is an oscil-
lating electric field emanating from the first particle. We can plot the magnitude of
this electric field at a given instant as it would be felt by a series of imaginary test
charges stationed along a line emanating from the source and perpendicular to the axis
of vibration (Fig. 1-6).

If there are some magnetic compasses in the neighborhood of the oscillating charge,
these will be found to swing back and forth in response to the disturbance. This means
that an oscillatingnagnetidield is produced by the charge too. Varying the placement
of the compasses will show that this field oscillates in a plane perpendicular to the
axis of vibration of the charged particle. The combined electric and magnetic fields
traveling along one ray in they plane appear in Fig. 1-7.

The changes in electric and magnetic fields propagate outward with a characteristic
velocity ¢, and are describable as a traveling wave, called an electromagnetic wave.
Its frequencyv is the same as the oscillation frequency of the vibrating charge. Its
wavelength ish = ¢/v. Visible light, infrared radiation, radio waves, microwaves,
ultraviolet radiation, X rays, angt rays are all forms of electromagnetic radiation,
their only difference being their frequenciesWe shall continue the discussion in the
context of light, understanding that it applies to all forms of electromagnetic radiation.

o
H
B

Figure 1-6 » A harmonic electric-field wave emanating from a vibrating electric charge. The wave
magnitude is proportional to the force felt by the test charges. The charges are only imaginary; if
they actually existed, they would possess mass and under acceleration would absorb energy from the
wave, causing it to attenuate.
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Figure 1-7 » A harmonic electromagnetic field produced by an oscillating electric charge. The
arrows without attached charges show the direction in which the north pole of a magnet would be
attracted. The magnetic field is oriented perpendicular to the electric field.

If a beam of light is produced so that the orientation of the electric field wave is
always in the same plane, the light is said to be plane (or linearly) polarized. The plane-
polarized light shown in Fig. 1-7 is said to beolarized. If the plane of orientation
of the electric field wave rotates clockwise or counterclockwise about the axis of travel
(i.e., if the electric field wave “corkscrews” through space), the light is said to be right
or left circularly polarized. If the light is a composite of waves having random field
orientations so that there is no resultant orientation, the light is unpolarized.

Experiments with light in the nineteenth century and earlier were consistent with
the view that light is a wave phenomenon. One of the more obvious experimental
verifications of this is provided by the interference pattern produced when light from a
point source is allowed to pass through a pair of slits and then to fall on a screen. The
resulting interference patterns are understandable only in terms of the constructive and
destructive interference of waves. The differential equations of Maxwell, which pro-
vided the connection between electromagnetic radiation and the basic laws of physics,
also indicated that light is a wave.

But there remained several problems that prevented physicists from closing the book
onthis subject. One was the inability of classical physical theory to explain the intensity
and wavelength characteristics of light emitted by a glowing “blackbody.” This problem
was studied by Planck, who was forced to conclude that the vibrating charged particles
producing the light can exist only in certain discrete (separated) energy states. We
shall not discuss this problem. Another problem had to do with the interpretation of a
phenomenon discovered in the late 1800s, calleghtimtoelectric effect

1-6 The Photoelectric Effect

This phenomenon occurs when the exposure of some material to light causes it to eject
electrons. Many metals do this quite readily. A simple apparatus that could be used to
study this behavior is drawn schematically in Fig. 1-8. Incident light strikes the metal
dish in the evacuated chamber. If electrons are ejected, some of them will strike the
collecting wire, giving rise to a deflection of the galvanometer. In this apparatus, one
can vary the potential difference between the metal dish and the collecting wire, and
also the intensity and frequency of the incident light.

Suppose that the potential difference is set at zero and a current is detected when
light of a certain intensity and frequency strikes the dish. This means that electrons
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Figure 1-8 » A phototube.

are being emitted from the dish with finite kinetic energy, enabling them to travel to
the wire. If a retarding potential is now applied, electrons that are emitted with only a
small kinetic energy will have insufficient energy to overcome the retarding potential
and will not travel to the wire. Hence, the current being detected will decrease. The
retarding potential can be increased gradually until finally even the most energetic
photoelectrons cannot make it to the collecting wire. This enables one to calculate the
maximum kinetic energy for photoelectrons produced by the incident light on the metal
in question.
The observations from experiments of this sort can be summarized as follows:

1. Below a certain cutoff frequency of incident light, no photoelectrons are ejected, no
matter how intense the light.

2. Above the cutoff frequency, the number of photoelectrons is directly proportional
to the intensity of the light.

3. As the frequency of the incident light is increased, the maximum kinetic energy of
the photoelectrons increases.

4. In cases where the radiation intensity is extremely low (but frequency is above the
cutoff value) photoelectrons are emitted from the metal without any time lag.

Some of these results are summarized graphically in Fig. 1-9. Apparently, the kinetic
energy of the photoelectron is given by

kinetic energy= (v — vo) (1-33)

wheref is a constant. The cutoff frequengydepends on the metal being studied (and
also its temperature), but the slopés the same for all substances.
We can also write the kinetic energy as

kinetic energy= energy of light- energy needed to escape surface (1-34)
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Figure 1-9 » Maximum kinetic energy of photoelectrons as a function of incident light frequency,
whereyg is the minimum frequency for which photoelectrons are ejected from the metal in the absence
of any retarding or accelerating potential.

The last quantity in Eq. (1-34) is often referred to aswhmek function’#” of the metal.
Equating Eqg. (1-33) with (1-34) gives

energy of light- W =hv — hyg (1-35)

The material-dependent teri# is identified with the material-dependent tefimg,
yielding

energy of light= £ =hv (1-36)

where the value of has been determined to b&86176x 1034 J sec. (See Appendix
10 for units and conversion factors.)

Physicists found it difficult to reconcile these observations with the classical electro-
magnetic field theory of light. For example, if light of a certain frequency and intensity
causes emission of electrons having a certain maximum kinetic energy, one would
expect increased liglmtensity(corresponding classically to a greater electromagnetic
field amplitude and hence greater energy density) to produce photoelectrons of higher
kinetic energy. However, it only produces more photoelectrons and does not affect their
energies. Again, if light is a wave, the energy is distributed over the entire wavefront
and this means that a low light intensity would impart energy at a very low rate to an
area of surface occupied by one atom. One can calculate that it would take years for an
individual atom to collect sufficient energy to eject an electron under such conditions.
No such induction period is observed.

An explanation for these results was suggested in 1905 by Einstein, who proposed
that the incident light be viewed as being comprised of discrete units of energy. Each
such unit, oiphoton would have an associated energy:ofwherev is the frequency
of the oscillating emitter. Increasing the intensity of the light would correspond to
increasing the number of photons, whereas increasing the frequency of the light would
increase the energy of the photons. If we envision each emitted photoelectron as
resulting from a photon striking the surface of the metal, it is quite easy to see that
Einstein’s proposal accords with observation. But it creates a new problem: If we are
to visualize light as a stream of photons, how can we explain the wave properties of
light, such as the double-slit diffraction pattern? What is the physical meaning of the
electromagnetic wave?
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Essentially, the problem is that, in the classical view, the square of the electromag-
netic wave at any point in space is a measure of the energy density at that point. Now
the square of the electromagnetic wave is a continuous and smoothly varying function,
and if energy is continuous and infinitely divisible, there is no problem with this the-
ory. But if the energy cannot be divided into amounts smaller than a photon—if it has
a particulate rather than a continuous nature—then the classical interpretation cannot
apply, for it is not possible to produce a smoothly varying energy distribution from
energyparticlesany more than it is possible to produce, at the microscopic level, a
smooth density distribution in gas made from atoms of matter. Einstein suggested that
the square of the electromagnetic wave at some point (that is, the sum of the squares
of the electric and magnetic field magnitudes) be taken aprbteability densityfor
finding a photon in the volume element around that point. The greater the square of
the wave in some region, the greater is the probability for finding the photon in that
region. Thus, the classical notion of energy having a definite and smoothly varying
distribution is replaced by the idea of a smoothly varying probability density for finding
an atomistic packet of energy.

Let us explore this probabilistic interpretation within the context of the two-slit
interference experiment. We know that the pattern of light and darkness observed on
the screen agrees with the classical picture of interference of waves. Suppose we carry
out the experiment in the usual way, except we use a light source (of frequgsoy
weak that onlyzv units of energy per second pass through the apparatus and strike
the screen. According to the classical picture, this tiny amount of energy should strike
the screen in a delocalized manner, producing an extremely faint image of the entire
diffraction pattern. Over a period of many seconds, this pattern could be accumulated
(on a photographic plate, say) and would become more intense. According to Einstein’s
view, our experiment corresponds to transmission of one photon per second and each
photon strikes the screen at a localized point. Each photon strikes a new spot (not to
imply the same spot cannot be struck more than once) and, over a long period of time,
they build up the observed diffraction pattern. If we wish to state in advance where the
next photon will appear, we are unable to do so. The best we can do is to say that the
next photon is more likely to strike in one area than in another, the relative probabilities
being quantitatively described by the square of the electromagnetic wave.

The interpretation of electromagnetic waves as probability waves often leaves one
with some feelings of unreality. If the wave only tells us relative probabilities for
finding a photon at one point or another, one is entitled to ask whether the wave has
“physical reality,” or if it is merely a mathematical device which allows us to analyze
photon distribution, the photons being the “physical reality.” We will defer discussion
of this question until a later section on electron diffraction.

EXAMPLE 1-1 Aretarding potential of 2.38 volts just suffices to stop photoelectrons
emitted from potassium by light of frequencyl® x 10'°s~1. What is the work
function, W, of potassium?

SOLUTION »  Ejigns =hv=W + K Eciectrons W =hv — K Eqjectron = (4.136x 107 1%V g
(1.13x 1015s71) — 2.38eV=4.67eV— 2.38eV=2.29 eV [Note convenience of usirigin units
of eV s for this problem. See Appendix 10 for data.] <
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EXAMPLE 1-2 Spectroscopists often expreS# for a transition between states i
wavenumbers , e.g., ™, or cn 1, rather than in energy units like J or eV. (Usually
cm 1 is favored, so we will proceed with that choice.)

a) What is the physical meaning of the term wavenumber?

b) What is the connection between wavenumber and energy?
c) What wavenumber applies to an energy @D J? of 1.000 eV?

>

SOLUTION » a) Wavenumber is the number of waves that fit into a unit of distance (usually of
one centimeter). Itis sometimes symboliZed =1/A, wherex is the wavelength in centimeters.

b) Wavenumber characterizes the light that has photons of the designated éherfly.=hc/A =

hev. (wherec is given in cm/s).

¢) E =1.000 J= hci; 7 =1.000 Jhe=1.000J/[(6.626x 10734 J $(2.998 x 1010 cm/s)] =
5.034x 1022cm~1. Clearly, this is light of an extremely short wavelength since more thaA 10
wavelengths fitinto 1 cm. For 1.000 eV, the above equation is repeatediusiy s. This gives

7 =8065cm 1. <

[ J 1-7 The Wave Nature of Matter

Evidently light has wave and particle aspects, and we can describe itin terms of photons,
which are associated with waves of frequeneyE / 1. Now photons are rather peculiar
particles in that they have zero rest mass. In fact, they can exist only when traveling
at the speed of light. The more normal particles in our experience have nonzero rest
masses and can exist at any velocity up to the speed-of-light limit. Are there also waves
associated with such normal particles?

Imagine a particle having a finite rest mass that somehow can be made lighter and
lighter, approaching zero in a continuous way. It seems reasonable that the existence
of a wave associated with the motion of the particle should become more and more
apparent, rather than the wave coming into existence abruptly whef. De Broglie
proposed that all material particles are associated with waves, which he called “matter
waves,” but that the existence of these waves is likely to be observable only in the
behaviors of extremely light particles.

De Broglie’s relation can be reached as follows. Einstein’s relation for photons is

E=hv (1-37)
But a photon carrying energy has a relativistic mass given by
E=mc? (1-38)
Equating these two equations gives
E=mc®=hv=hc/x\ (1-39)
or

mc=h/A (1-40)
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Anormal particle, with nonzero rest mass, travels at a velacitjwe regard Eq. (1-40)
as merely the high-velocity limit of a more general expression, we arrive at an equation
relating particle momenturp and associated wavelength

mv=p=h/i (1-412)
or
A=h/p (1-42)

Here,m refers to the rest mass of the particle plus the relativistic correction, but the
latter is usually negligible in comparison to the former.

This relation, proposed by de Broglie in 1922, was demonstrated to be correct shortly
thereafter when Davisson and Germer showed that a beam of electrons impinging on a
nickel target produced the scattering patterns one expects frominterfering waves. These
“electron waves” were observed to have wavelengths related to electron momentum in
just the manner proposed by de Broglie.

Equation (1-42) relates the de Broglie wavelengtif a matter wave to the momen-
tum p of the particle. A higher momentum corresponds to a shorter wavelength. Since

kinetic energyl’ = mv® = (1/2m)(m*v?) = p?/2m (1-43)
it follows that
p=~2mT (1-44)

Furthermore, Sinc& =T + V', where E is the total energy and is the potential
energy, we can rewrite the de Broglie wavelength as

h
Yy (1-45)

Equation (1-45) is useful for understanding the way in whichill change for a
particle moving with constant total energy in a varying potential. For example, if the
particle enters aregion where its potential energy increases (e.g., an electron approaches
a negatively charged platel, — V' decreases andincreases (i.e., the particle slows
down, so its momentum decreases and its associated wavelength increases). We shall
see examples of this behavior in future chapters.

Observe that ifE > V, 1 as given by Eq. (1-45) is real. However, &f < V', A
becomes imaginary. Classically, we never encounter such a situation, but we will find
it is necessary to consider this possibility in quantum mechanics.

EXAMPLE 1-3 A He?" ion is accelerated from rest through a voltage drop of 1.000
kilovolts. What is its final deBroglie wavelength? Would the wavelike properties
be very apparent?

SOLUTION » Since a charge of two electronic units has passed through a voltage drop
of 1.000x 103 volts, the final kinetic energy of the ion is@D0 x 103eV. To calculate., we first
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convert from eV to joules:K E = p2/2m = (2.000x 103 eV)(1.60219x 10~19 J/eV) = 3.204

x 10716 3. m . = (4.003 g/mol)(10~3kg/g)(1 mol/6.022 x 10%3atoms = 6.65 x 10~27kg;
p=+/2m e KE=[2(6.65x 10 27kg)(3.204x 10716 3)11/2=21x 1072 kgm/s. A=h/p=

(6.626x 1073439 /(2.1 x 10~2 kg m/s) = 3.2 x 10-13m=0.32 pm. This wavelength is on the

order of 1% of the radius of a hydrogen atom-too short to produce observable interference results
when interacting with atom-size scatterers. For most purposes, we can treat this ion as simply a
high-speed patrticle. <

D 1-8 A Diffraction Experiment with Electrons

In order to gain a better understanding of the meaning of matter waves, we now consider
a set of simple experiments. Suppose that we have a source of a beam of monoener-
getic electrons and a pair of slits, as indicated schematically in Fig. 1-10. Any electron
arriving at the phosphorescent screen produces a flash of light, just as in a television
set. For the moment we ignore the light source near the slits (assume that it is turned
off) and inquire as to the nature of the image on the phosphorescent screen when the
electron beam is directed at the slits. The observation, consistent with the observations
of Davisson and Germer already mentioned, is that there are alternating bands of light
and dark, indicating that the electron beam is being diffracted by the slits. Further-
more, the distance separating the bands is consistent with the de Broglie wavelength
corresponding to the energy of the electrons. The variation in light intensity observed
on the screen is depicted in Fig. 1-11a.

Evidently, the electrons in this experiment are displaying wave behavior. Does this
mean that the electrons are spread out like waves when they are detected at the screen?
We test this by reducing our beam intensity to let only one electron per second through
the apparatus and observe that each electron gives a localized pinpoint of light, the
entire diffraction pattern building up gradually by the accumulation of many points.
Thus, the square of de Broglie's matter wave has the same kind of statistical significance
that Einstein proposed for electromagnetic waves and photons, and the electrons really
are localized particles, at least when they are detected at the screen.

However, if they are really particles, it is hard to see how they can be diffracted.
Consider what happens when dlits closed. Then all the electrons striking the screen
must have come through slit We observe the result to be a single area of light on
the screen (Fig. 1-11b). Closing slitand opening gives a similar (but displaced)

_q. e o=
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Figure 1-10 » The electron source produces a beam of electrons, some of which pass through slits
a and/orb to be detected as flashes of light on the phosphorescent screen.
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kN 13l el <l HE
Figure 1-11 » Lightintensity at phosphorescent screen under various conditionsata open,

light off; (b) a open,b closed, light off; (c)a closed,b open, light off; (d)a andb open, light onp
short; (e)a andb open, light on longer.

light area, as shown in Fig. 1-11c. These patterns are just what we would expect for
particles. Now, with both slits open, we expect half the particles to pass through slit
and half through slib, the resulting pattern being tisemof the results just described.
Instead we obtain the diffraction pattern (Fig. 1-11a). How can this happen? It seems
that, somehow, an electron passing through the apparatus can sense whether one or
both slits are open, even though as a particle it can explore only one slit or the other.
One might suppose that we are seeing the result of simultaneous traversal of the two
slits by two electrons, the path of each electron being affected by the presence of an
electron in the other slit. This would explain how an electron passing through slit
would “know” whether slitb was open or closed. But the fact that the pattern builds

up even when electrons pass through at the rate of one per second indicates that this
argument will not do. Could an electron be coming through both slits at once?

To test this question, we need to have detailed information about the positions of the
electrons as they pass through the slits. We can get such data by turning on the light
source and aiming a microscope at the slits. Then photons will bounce off each electron
as it passes the slits and will be observed through the microscope. The observer thus
can tell through which slit each electron has passed, and also record its final position
on the phosphorescent screen. In this experiment, it is necessary to use light having
a wavelength short in comparison to the interslit distance; otherwise the microscope
cannot resolve a flash well enough to tell which slit it is nearest. When this experiment
is performed, we indeed detect each electron as coming through one slit or the other,
and not both, but we also find that the diffraction pattern on the screen has been lost
and that we have the broad, featureless distribution shown in Fig. 1-11d, which is
basically the sum of the single-slit experiments. What has happened is that the photons
from our light source, in bouncing off the electrons as they emerge from the slits, have
affected the momenta of the electrons and changed their paths from what they were
in the absence of light. We can try to counteract this by using photons with lower
momentum; but this means using photons of lowiethence longei. As a result,
the images of the electrons in the microscope get broader, and it becomes more and
more ambiguous as to which slit a given electron has passed through or that it really
passed through only one slit. As we become more and more uncertain about the path
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of each electron as it moves past the slits, the accumulating diffraction pattern becomes
more and more pronounced (Fig. 1-11e). (Since this is a “thought experiment,” we can
ignore the inconvenient fact that our “light” source must produce X rays i@ys in
order to have a wavelength short in comparison to the appropriate interslit distance.)
This conceptual experiment illustrates a basic feature of microscopic systems—we
cannot measure properties of the system without affecting the future development of the
system in a nontrivial way. The system with the light turned off is significantly different
from the system with the light turned on (with sha)t and so the electrons arrive at the
screen with different distributions. No matter how cleverly one devises the experiment,
there is some minimum necessary disturbance involved in any measurement. In this
example with the light off, the problem is that we know the momentum of each electron
guite accurately (since the beam is monoenergetic and collimated), but we do not know
anything about the way the electrons traverse the slits. With the light on, we obtain
information about electron position just beyond the slits but we change the momentum
of each electron in an unknown way. The measurement of particle position leads to
loss of knowledge about particle momentum. This is an example dfithertainty
principleof Heisenberg, who stated that the product of the simultaneous uncertainties in
“conjugate variables/ andb, can never be smaller than the value of Planck’s constant
h divided by 4r:

Aa-Ab>h/Ar (1-46)

Here, Aa is a measure of the uncertainty in the variab)estc. (The easiest way to
recognize conjugate variables is to note that their dimensions must multiply to joule
seconds. Linear momentum and linear position satisfies this requirement. Two other
important pairs of conjugate variables are energy—time and angular momentum—-angular
position.) In this example with the light off, our uncertainty in momentum is small
and our uncertainty in position is unacceptably large, since we cannot say which slit
each electron traverses. With the light on, we reduce our uncertainty in position to
an acceptable size, but subsequent to the position of each electron being observed, we
have much greater uncertainty in momentum.

Thus, we see that the appearance of an electron (or a photon) as a particle or a wave
depends on our experiment. Becaasgobservation on so small a particle involves a
significant perturbation of its state, it is proper to think of the electron plus apparatus
as a single system. The question, “Is the electron a particle or a wave?” becomes
meaningful only when the apparatus is defined on which we plan a measurement.
In some experiments, the apparatus and electrons interact in a way suggestive of the
electron being a wave, in others, a particle. The question, “What is the electron when
were notlooking?,” cannot be answered experimentally, since an experimentis a “look”
at the electron. In recent years experiments of this sort have been carried out using
single atoms.

EXAMPLE 1-4 The lifetime of an excited state of a molecule is20~° s. What
is the uncertainty in its energy in J? In ch? How would this manifest itself
experimentally?

5See F. Flam [1].
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SOLUTION » The Heisenberg uncertainty principle gives, for minimum uncertaiy: Ar =
h/4m. AE=(6.626x 1073439 /[(4n)(2 x 10795)]=2.6 x 10726 J(2.6 x 10~28J) (5.03 x 10?2
cm~1371)=0.001 cnt? (See Appendix 10 for data.) Larger uncertainty in E shows up as greater
line-width in emission spectra. <

D 1-9 Schrodinger’s Time-Independent Wave Equation

Earlier we saw that we needed a wave equation in order to solve for the standing waves
pertaining to a particular classical system and its set of boundary conditions. The same
need exists for a wave equation to solve for matter waves.o8uigér obtained such

an equation by taking the classical time-independent wave equation and substituting
de Broglie’s relation foi.. Thus, if

V2 = — (27 /0%y (1-47)
and
[ (1-48)
 V2Zm(E—=T)
then
[—(h?/872m)V2+V (x, y, D] ¥ (x, y,2) = EY(x, ¥, 2) (1-49)

Equation (1-49) is Scladinger’s time-independent wave equation for a single particle
of massn moving in the three-dimensional potential figfd

In classical mechanics we have separate equations for wave motion and particle
motion, whereas in quantum mechanics, in which the distinction between particles and
waves is not clear-cut, we have a single equation—thedslangér equation. We have
seen that the link between the Satliriger equation and the classieaveequation is
the de Broglie relation. Let us now compare Sxtinger’s equation with the classical
equation formparticle motion.

Classically, for a particle moving in three dimensions, the total energy is the sum of
kinetic and potential energies:

(1/2m)(pF+ p5+ p2) +V =E (1-50)
wherep, isthe momentum in thecoordinate, etc. We have just seen thatthe analogous

Schigdinger equation is [writing out Eq. (1-49)]

o A CE N
[&T—Zm(W+a—yz+@)+V(x,y,Z)]w(x,y,Z)=Elﬁ(x,y,Z) (1'51)

It is easily seen that Eq. (1-50) is linked to the quantity in brackets of Eqg. (1-51) by a
relation associating classical momentum with a partial differential operator:

Py <> (h/27i)(9/0x) (1-52)

and similarly forp, and p.. The relations (1-52) will be seen later to be an important
postulate in a formal development of quantum mechanics.
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The left-hand side of Eq. (1-50) is called thamiltonianfor the system. For this
reason the operator in square brackets onthe LHS of Eq. (1-51) is calleaittikonian
operatoP H. For a given system, we shall see that the constructidhisfnot difficult.
The difficulty comes in solving Schdinger’s equation, often written as

Hy = Ey (1-53)

The classical and quantum-mechanical wave equations that we have discussed are
members of a special class of equations cadliggtnvalue equationsSuch equations
have the format

Oopf=cf (1-54)

where Op is an operatof,is a function, and is a constant. Thus, eigenvalue equations
have the property that operating on a function regenerates the same function times a
constant. The functiory’ that satisfies Eq. (1-54) is called aigenfunctionof the
operator. The constanmtis called theeigenvalueassociated with the eigenfunction

f. Often, an operator will have a large number of eigenfunctions and eigenvalues of
interest associated with it, and so an index is nhecessary to keep them sorted, viz.

Op fi=cifi (1-55)

We have already seen an example of this sort of equation, Eq. (1-19) being an eigen-
function for Eq. (1-18), with eigenvaluew?m/T.

The solutiong) for Schiodinger’s equation (1-53), are referred to as eigenfunctions,
wavefunctions, or state functions.

EXAMPLE 1-5 a) Show that si(B.63x) is not an eigenfunction of the operatc
d/dx.

b) Show that exp—3.63ix) is an eigenfunction of the operatdfdx. Whatis its
eigenvalue?

c) Show that %sin(3.63x) is an eigenfunction of the operatg
((—h?2/87%m)d?/dx?). What is its eigenvalue?

=

=

SOLUTION » a)% sin(3.63r) = 3.63 c0%3.63x) # constant times si{3.63x).
b) %exp(—3.63ix) = —3.63 exp(—3.63ix) =constant times exp-3.63ix). Eigenvalue=
—3.63i.
€) ((—h?/87%m)d?/dx?) L sin(3.63v) = (—h?/8n%m)(1/m)(3.63) L cog3.63x)
= [(3.63)2h2/872m] - (1/7) Sin(3.63x)
= constant timegl/7) sin(3.63x).
Eigenvalue= (3.63)212/872m. <

6An operatoris a symbol telling us to carry out a certain mathematical operation. Thds, is a differential
operatortelling us to differentiate anything following it with respectito The function ¥x may be viewed as a
multiplicative operator. Any function on which it operates gets multiplied py. 1
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1-10 Conditionson ¢

We have already indicated that the square of the electromagnetic wave is interpreted as
the probability density function for finding photons at various places in space. We now
attribute an analogous meaningyd for matterwaves. Thus, in a one-dimensional
problem (for example, a particle constrained to move on a line), the probability that the
particle will be found in the intervafx around the poink; is taken to bey2(x1) dx.
If v is a complex function, then thabsolute squarely/ |2 = y* is used instead of
¥2.” This makes it mathematically impossible for the average mass distribution to be
negative in any region.

If an eigenfunctiony has been found for Eq. (1-53), it is easy to see thawill
also be an eigenfunction, for any constanThis is due to the fact that a multiplicative
constant commutéswith the operatoi/, that is,

H(cW) =cHyr = cEy = E(cyr) (1-56)

The equality of the first and last terms is a statement of the factihas an eigen-
function of H. The question of which constant to use for the wavefunction is resolved
by appeal to the probability interpretation|gf|2. For a particle moving on the axis,
the probability that the particle is between= —co andx = +o0 is unity, that is, a
certainty. This probability is also equal to the sum of the probabilities for finding the
particle in each and every infinitesimal interval alongo this sum (an integral) must
equal unity:
+0o0
c*c Y)Y (x)dx=1 (1-57)
—o0

If the selection of the constant multiplieris made so that Eq. (1-57) is satisfied,
the wavefunction)’ = cy is said to benormalized For a three-dimensional function,
¢y (x, y, z), the normalization requirement is

“+00 +00 +0o0
c*c/ / (s v 2 (6, v, 2) dx dydz= |c|2/ W Rdv=1
—00 —00 —00 all space
(1-58)

As a result of our physical interpretation of |2 plus the fact thaty must be an
eigenfunction of the hamiltonian operatél, we can reach some general conclusions
about what sort of mathematical propertiegan or cannot have.

First, we require thay be asingle-valuedunction because we waht |? to give an
unambiguous probability for finding a particle in a given region (see Fig. 1-12). Also,
we reject functions that are infinite in any region of space because such an infinity
will always be infinitely greater than any finite region, amwd? will be useless as a
measure of comparative probabilittdn order for Hy to be defined everywhere, it
is necessary that the second derivativeydfe defined everywhere. This requires that
the first derivative ofy be piecewise continuouand thaty itself becontinuousas in
Fig.1d. (We shall see an example of this shortly.)

7If f=u+iv, then f*, the complex conjugate of, is given byu — iv, wherex andv are real functions.

84 andb are said taommutef ab = ba.

9There are cases, particularly in relativistic treatments, witeizinfinite at single points of zero measure, so
that|y|2 dx remains finite. Normally we do not encounter such situations in quantum chemistry.
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Figure 1-12 » (@) is triple valued atq. (b) v is discontinuous atg. (c) ¥ grows without limit
asx approaches-co (i.e., ¥ “blows up,” or “explodes”). (d) is continuous and has a “cusp”.
Hence, first derivative ofr is discontinuous atg and is only piecewise continuous. This does not
preventy from being acceptable.

Functions that are single-valued, continuous, nowhere infinite, and have piecewise
continuous first derivatives will be referred toasceptabldunctions. The meanings
of these terms are illustrated by some sample functions in Fig. 1-12.

In most cases, there is one more general restriction we plagk, oramely, that
it be a normalizable function. This means that the integralydf over all space
must not be equal to zero or infinity. A function satisfying this condition is said to
be square-integrable

D 1-11 Some Insight into the Schr™ odinger Equation

There is a fairly simple way to view the physical meaning of the 8dimger equation
(1-49). The equation essentially states thah Hy = Ey depends on two thing$;

and the second derivatives¥f Sincel is the potential energy, the second derivatives

of ¥ must be related to the kinetic energy. Now the second derivatiyevath respect

to a given direction is a measure of the rate of change of slope (i.e., the curvature, or
“wiggliness”) of ¢ in that direction. Hence, we see that a more wiggly wavefunction
leads, through the Sabdlinger equation, to a higher kinetic energy. This is in accord
with the spirit of de Broglie’s relation, since a shorter wavelength function is a more
wiggly function. Butthe Sclodinger equation is more generally applicable because we
can take second derivatives of any acceptable function, whereas wavelength is defined
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Figure 1-13 » (&) SinceV =0, E=T. For higherT, ¢ is more wiggly, which means thatis
shorter. (Since) is periodic for a free particle, is defined.) (b) A9 increases from left to right)
becomes less wiggly. (c)—(d) is most wiggly wherd” is lowest andr" is greatest.

only for periodic functions. Sinc& is a constant, the solutions of the Sotiiriger
equation must be more wiggly in regions whétds low and less wiggly wher& is
high. Examples for some one-dimensional cases are shown in Fig. 1-13.

In the next chapter we use some fairly simple examples to illustrate the ideas that
we have already introduced and to bring out some additional points.

D 1-12 Summary

In closing this chapter, we collect and summarize the major points to be used in
future discussions.

1. Associated with any particle is a wavefunction having wavelength related to particle

momentumbw =h4/p=nh//2m(E - V).

2. The wavefunction has the following physical meaning; its absolute square is pro-
portional to the probability density for finding the particle. If the wavefunction is
normalized, its square equalto the probability density.

3. Thewavefunctiong fortime-independent states are eigenfunctions of &@tihger’s
equation, which can be constructed from the classical wave equation by requir-
ing A =h//2m(E — V), or from the classical particle equation by replacing
with (h/2mi)d/0k, k=x, y, z.
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4. Forv to be acceptable, it must be single-valued, continuous, nowhere infinite, with
a piecewise continuous first derivative. For most situations, we also reguioe
be square-integrable.

5. The wavefunction for a particle in a varying potential oscillates most rapidly where
V' is low, giving a highT in this region. The low” plus highT equalsE. In another
region, wheréd” is high, the wavefunction oscillates more slowly, giving a 15w
which, with the high?, equals the samg as in the first region.

1-12.A Problems 10

1-1.

1-2.

1-3.

1-4.

1-5.

1-6.

Expressd4 cogkx) + Bsin(kx) + C exp(ikx) + Dexp(—ikx) purely in terms of
cogkx) and sirtkx).

Repeat the standing-wave-in-a-string problem worked out in Section 1-4, but
clamp the string at = +71/2 and—L/2 instead of at 0 and.

Find the condition that must be satisfied byand g in order thaty (x) =
A sin(ax) + B co9Bx) satisfy Eq. (1-20).

The apparatus sketched in Fig. 1-8 is used with a dish plated with zinc and also
with a dish plated with cesium. The wavelengths of the incident light and the
corresponding retarding potentials needed to just prevent the photoelectrons from
reaching the collecting wire are given in Table P1-4. Plot incident light frequency
versus retarding potential for these two metals. Evaluate their work functions
(in eV) and the proportionality constaht(in eV s).

TABLE P1-4 »

Retarding potential (V)

A(A) Cs Zn
6000 0.167 —
3000 2.235 0.435
2000 4.302 2.502
1500 6.369 1.567
1200 8.436 6.636

Calculate the de Broglie wavelength in nanometers for each of the following:

a) An electron that has been accelerated from rest through a potential change of
500V.
b) A bullet weighing 5gm and traveling at 400 ms

Arguing from Eq. (1-7), what is the time needed for a standing wave to go through
one complete cycle?

10Hints for a few problems may be found in Appendix 12 and answers for almost all of them appear in
Appendix 13.
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1-7.

1-8.

1-9.

1-10.

1-11.

1-12.

The equation for a standing wave in a string has the form

W(x,t)=1Y(x)coSwt)

a) Calculate the time-averaged potential energy (PE) for this motitint:[Use
PE=— [ FdV; F=ma;a=03%V/3t2]

b) Calculate the time-averaged kinetic energy (KE) for this motibtintf Use
KE =1/2mv? andv =0W/d1.]

c) Show that this harmonically vibrating string stores its enengyhe average
half as kinetic and half as potential energy, and @) aver iy 2(x).

Indicate which of the following functions are “acceptable.” If one is not, give
a reason.

a) y=x

b) v = x2

C) ¥ =sinx

d) ¥ =exp(—x)
e) ¥ =exp(—x?)

An acceptable function is never infinite. Does this mean that an acceptable
function must be square integrable? If you think these are not the same, try to
find an example of a function (other than zero) that is never infinite but is not
square integrable.

Explain why the fact that siix) = —sin(—x) means that we can restrict
Eq. (1-32) to nonnegative without loss of physical content.

Which of the following are eigenfunctions faydx?

a) x2

b) exp(—3.4x?)

c) 37

d) expx)

e) sinax)

f) cos(4x) + i sin(4x)

Calculate the minimum de Broglie wavelength for a photoelectron that is pro-
duced when light of wavelength 140nm strikes zinc metal. (Workfunction of
zinc=3.63eV.)

Multiple Choice Questions

(Intended to be answered without use of pencil and paper.)

1. A particle satisfying the time-independent Safliriger equation must have

a)
b)
c)

an eigenfunction that is normalized.
a potential energy that is independent of location.
a de Broglie wavelength that is independent of location.
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d) atotal energy that is independent of location.
e) None of the above is a true statement.

2. When one operates wit#?/dx2 on the function 6 sitéx), one finds that

a) the function is an eigenfunction with eigenvalu@6.
b) the function is an eigenfunction with eigenvalue 16.
c) the function is an eigenfunction with eigenvalu#&6.
d) the function is not an eigenfunction.

e) None of the above is a true statement.

3. Which one of the following concepts did Einstein propose in order to explain the
photoelectric effect?

a) A particle of rest mass and velocityv has an associated wavelengtgiven by
A=h/mv.

b) Doubling the intensity of light doubles the energy of each photon.

c) Increasing the wavelength of light increases the energy of each photon.

d) The photoelectron is a particle.

e) None of the above is a concept proposed by Einstein to explain the photoelectric
effect.

4. Light of frequency strikes a metal and causes photoelectrons to be emitted having
maximum kinetic energy of.00/4v. From this we can say that

a) light of frequency /2 will not produce any photoelectrons.

b) light of frequency 2 will produce photoelectrons having maximum Kkinetic
energy of 180/v.

c) doubling the intensity of light of frequeneywill produce photoelectrons having
maximum kinetic energy of.804v.

d) the work function of the metal is@0/v.

e) None of the above statements is correct.

5. The reason for normalizing a wavefunctignis

a) to guarantee that is square-integrable.

b) to makey*y equal to the probability distribution function for the particle.
c) to makey an eigenfunction for the Hamiltonian operator.

d) to makey satisfy the boundary conditions for the problem.

e) to makey display the proper symmetry characteristics.

Reference

[1] F. Flam,Making Waves with Interfering Atoms. Physics Tod#1-922 (1991).



Chapter 2

Quantum Mechanics of Some
Simple Systems

D 2-1 The Particle in a One-Dimensional “Box”

Imagine that a particle of massis free to move along the axis betweenr =0 and
x = L, with no change in potential (s&t=0for 0<x < L). At x =0 andL and at all
points beyond these limits the particle encounters an infinitely repulsive bafriend
for x <0,x > L). The situation is illustrated in Fig. 2-1. Because of the shape of this
potential, this problem is often referred to gsaticle in a square welbr aparticle in
a boxproblem. It is well to bear in mind, however, that the situation is really like that
of a particle confined to movement along a finite length of wire.

When the potential is discontinuous, as it is here, it is convenient to write a wave
equation for each region. For the two regions beyond the ends of the box

—h* dz‘/f+oo¢ EY, x<0x>1L
i = X X
8m2m dx? ' - (2-1)
Within the box,» must satisfy the equation
—h? d?y
guZm dx2 LV O=x<l (2-2)

It should be realized thaf must take on the same values for both of these equations;
the eigenvalueE' pertains to the entire range of the particle and is not influenced by
divisions we make for mathematical convenience.

Let us examine Eq. (2-1) first. Suppose that, at some point within the infinite barrier,
sayx = L +dx, ¢ isfinite. Then the second term on the left-hand side of Eq. (2-1) will
be infinite. If the first term on the left-hand side is finite or zero, it follows immediately
that £ is infinite at the pointL 4+ dx (and hence everywhere in the system). Is it
possible that a solution exists such tliais finite? One possibility is that =0 at all
points where” = co. The other possibility is that the first term on the left-hand side
of Eg. (2-1) can be made to cancel the infinite second term. This might happen if the
second derivative of the wavefunction is infinite at all points whéee co andy #£ 0.

For the second derivative to be infinite, the first derivative must be discontinuous, and
soy itself must be nonsmooth (i.e., it must have a sharp corner; see Fig. 2-2). Thus,
we see that it may be possible to obtain a finite value for Eo#ndy atx = L + dx,
provided that) is nonsmooth there. But what about the next point, L + 2dx, and

all the other points outside the box? If we try to use the same device, we end up with
the requirement that be nonsmooth at every point wheére=co. A function that is

27
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Figure 2-1 » The potential felt by a particle as a function of it€oordinate.

continuous but which has a point-wise discontinuous first derivative is a contradiction
in terms (i.e., a continuoug cannot be 100% corners. To have recognizable corners,
we must have some (continuous) edges. We say that the first derivaijvenoist be
piecewise continuousHence, ifl” = oo at a single pointwe might find a solution)s
which is finite at that point, with finite energy. i = oo over afinite range of connected
points, however, eithef for the system is infinite, and is finite over this region or

E is not infinite (but is indeterminate) anid is zero over this region.

We are not concerned with particles of infinite energy, and so we will say that the
solution to Eq. (2-1) isy =0.!

Turning now to Eq. (2-2) we ask what solutiofisexist in the box having associated
eigenvalued’ that are finite and positive. Any function that, when twice differentiated,
yields a negative constant times the selfsame function is a possible candiddte for
Such functions are sikx), cogkx), and exgtikx). But these functions are not all
independent since, as we noted in Chapter 1,

exp(xikx) = cogkx) £ i sin(kx) (2-3)

We thus are free to expregsin terms of exg+ikx) or else in terms of siftx) and
cogkx). We choose the latter because of their greater familiarity, although the final
answer must be independent of this choice.

The most general form for the solution is

¥ (x) = Asin(kx) + B coskx) (2-4)

where4, B, andk remain to be determined. As we have already shajvig zero at
x <0,x > L and so we have as boundary conditions

¥v(0) =0 (2-5)
¥(L)=0 (2-6)
Mathematically, this is precisely the same problem we have already solved in Chap-
ter 1 for the standing waves in a clamped string. The solutions are
Y(x) = Asinnrx/L), n=212,..., O<x<lL
Yy(x) =0, x<0x=>L (2-7)

1Thus, the particle never gets into these regions. It is meaningless to talk of the energy of the particle in such
regions, and our earlier statement tiiamnust be identical in Egs. (2-1) and (2-2) must be modifigds constant
in all regions wherey is finite.
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Figure 2-2 » As the functionf(x) approaches being nonsmoaoghapproaches zero (the width of
one point) and: approaches infinity.

One difference between Eq. (2-7) and the string solutions is that we have rejected the
n =0 solution in Eqg. (2-7). For the string, this solution was for no vibration at all—
a physically realizable circumstance. For the particle-in-a-box problem, this solution
is rejected because it is not square-integrable. (It gives0, which meango particle
on thex axis, contradicting our starting premise. One could also reject this solution
for the classical case since it means no energy in the string, which might contradict a
starting premise depending on how the problem is worded.)

Let us check to be sure these functions satisfy &dinger’s equation:

2 g2 ;
Hy(x) = &Tl;m de[Asin(nmtx/L)]

dx?
= oo [ ()]
= gugz[on(" )]0 @

This shows that the functions (2-7) are indeed eigenfunctiois. de note in passing
that these functions are acceptable in the sense of Chapter 1.
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The only remaining parameter is the constdaniVe set this to make the probability
of finding the particle in the well equal to unity:

L L
/ Y2 (x)dx = AZ/ sif(nx/L)dx =1 (2-9)
0 0
This leads to (Problem 2-2)
A=2/L (2-10)

which completes the solving of Satinger’s time-independent equation for the prob-
lem. Our results are the normalized eigenfunctions

Yn(x)=+/(2/L)sin(nrx/L), n=123,... (2-11)
and the corresponding eigenvalues, from Eqg. (2-8),
E,=n’h?/8mL? n=123,... (2-12)

Each different value ot corresponds to a different stationary state of this system.

D 2-2 Detailed Examination of Particle-in-a-Box Solutions

Having solved the Schdinger equation for the particle in the infinitely deep square-
well potential, we now examine the results in more detalil.

2-2.A Energies

The most obvious feature of the energies is that, as we move through the allowed states
(n=1,2,3,...), E skips from one discrete, well-separated value to another (1, 4, 9

in units of12/8m L?). Thus, the particle can have only certain discrete energies—the
energy isquantized This situation is normally indicated by sketching the allowed
energy levelsas horizontal lines superimposed on the potential energy sketch, as in
Fig. 2-3a. The factthateach energy levelis a horizontal line emphasizes the fdtithat

a constant and is the same regardless of theordinate of the particle. For this reason,

E is called aonstant of motionThe dependence @fonn? is displayed in the increased
spacing between levels with increasinigp Fig. 2-3a. The numberis called eguantum
number

We note also thak is proportional t. ~2. This means that the more tightly a particle
is confined, the greater is the spacing between the allowed energy levels. Alternatively,
as the box is made wider, the separation between energies decreases and, in the limit
of an infinitely wide box, disappears entirely. Thus, we associate quantized energies
with spatial confinement.

For some systems, the degree of confinement of a particle depends on its total energy.
For example, a pendulum swings over a longer trajectory if it has higher energy. The
potential energy for a pendulum is given by= %kx2 and is given in Fig. 2-3b. If
one solves the Scbdinger equation for this system (see Chapter 3), one finds that the
energies are proportional iorather tham?. We can rationalize this by thinking of
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ar
Figure 2-3 » Allowed energies for a particle in various one-dimensional potentials. (a) “box” with

infinite walls. (b) quadratic potential] = %kxz. (c) V =-1/|x|. Tendency for higher levels in (b)
and (c) not to diverge as in (a) is due to larger “effective box size” for higher energies in (b) and (c).

the particle as occupying successively bigger boxes as we go to higher energies. This
counteracts the? increase in energy levels found for constant box width. For the
potentialV = —1/ |x| (which is the one-dimensional analog of a hydrogen at@m)
varies as 1n2 (Fig. 2-3c), and this is also consistent with the effective increade in
with increasingE.

The energy is proportional to/#:. This means that the separation between allowed
energy levels decreasesmsncreases. Ultimately, for a macroscopic objectis so
large that the levels are too closely spaced to be distinguished from the continuum of
levels expected in classical mechanics. This is an example obtirespondence prin-
ciple, which, in its most general form, states that the predictions of quantum mechanics
must pass smoothly into those of classical mechanics whenever we progress in a con-
tinuous way from the microscopic to the macroscopic realm.

Notice that the lowest possible energy for this system occurs fod and isE =
h?/8m L?. This remarkable result means that a constrained particleiret infinite)
can never have an energy of zero. Evidently, the particle continues to move about in
the region 0 toL, even at a temperature of absolute zero. For this reaggBm L2
is called thezero-point energyor this system. In general, a finite zero-point energy
occurs in any system having a restriction for motion in any coordinate. (Notérthat
here meangot equal to zerg

Itis possible to show that, far # oo, our particle in a box would have to violate the
Heisenberg uncertainty principle to achieve an energy of zero. For, suppose the energy
is precisely zero. Then the momentum must be precisely zero too. (In this system,
all energy of the particle is kinetic sindé =0 in the box.) If the momentunp, is
preciselyzero, however, ouancertaintyin the value of the momentum p, is also
zero. If Ap, is zero, the uncertainty principle [Eq. (2-46)] requires that the uncertainty
in positionAx be infinite. But we know that the particle is betweea-0 andx = L.
Hence, our uncertainty is on the orderlofnot infinity, and the uncertainty principle
is not satisfied. However, whdh= oo (the particle is unconstrained), it is possible for
the uncertainty principle to be satisfied simultaneously with hafirg0, and thisis in
satisfying accord with the fact th@t=/2/8m L? goes to zero as approaches infinity.

Finally, we note that each separate value:déads to a different energy. Thus,
no two states have the same energy, and the states are saidaadegeneratgvith
respect to energy.
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EXAMPLE 2-1 Consider an electron in a one-dimensional box of length 258 pm
a) Whatis the zero-point energ¥iE) for this system? For a mole of such system
b) What electronic speed classically corresponds taaRE? Compare to the spee
of light.

2 wn
D -

SOLUTION » @) ZPE= Ejppest = En—1
1)2(6.626x 10734 g2
= 1242/8m 12 = (H7(6.526x 9
8(9.11 x 10-31kg)(258x 10-12m)2
= 9.05x 107197,

Per mole, this equals
(9.05x 10712)(6.022x 10?3 mol~1)(1kJ/10%J) = 545kImol !

b) E is all kinetic energy sinc& =0 in the box, SaE =mv2/2. Hence,

[ZE]l/ 2 [2(9.05x 10719y
vV=| — =
9.11x 1031kg

1/2
} =141x1Pms?
m

Compared to the speed of light, this% =0.0047, or about 0.5% of the speed of

light. <

2-2.B Wavefunctions

We turn now to the eigenfunctions (2-11) for this problem. These are typically displayed
by superimposing them on the energy levels as shown in Fig. 2-4 for the three lowest-
energy wavefunctions. (It should be recognized that the energy units of the vertical
axis donot pertain to the amplitudes of the wavefunctions.)

It is apparent from Fig. 2-4 that the allowed wavefunctions for this system could
have been produced merely by placing an integral number of half sine waves in the

Aenp

Eararimscl 57

1 L

3 !

Figure 2-4 » The eigenfunctions correspondingie- 1, 2, 3, plotted on the corresponding energy
levels. The energy units of the ordinate do not refer to the wavefunctiotisach wavefunction has
a zero value wherever it intersects its own energy level, and a maximum val/2/af
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range 0£. Theresulting wavelengths would then yield the energy of each state through
application of de Broglie’s relation (1-42). Thus, by inspection of Fig. 2-4, the allowed
wavelengths are

A=2L/n, n=1223,... (2-13)
Therefore
p=h/A=nh/2L (2-14)
and
E = p?/2m =n’h?/8mL? (2-15)

in agreement with Eq. (2-12). As pointed outin Section 1-11, the wavefunctions having
higher kinetic energy oscillate more rapidly. (Héfe=0, andE is all kinetic energy.)

Let us now consider the physical meaning of the eigenfuncilansccording to our
earlier discussiony 2 summarizes the results of many determinations of the position
of the particle. Suppose that we had a particle-in-a-box system that we had somehow
prepared in such a way that we knew it to be in the state mithl. We can imagine
some sort of experiment, such as flashing a powerfahy flashbulb and taking an
instantaneous photograph, which tells us where the particle was at the instant of the
flash. Now, suppose we wish to determine the position of the particle again. We want
this second determination to be for the- 1 state also, but we cannot use our original
system for this because we have “spoiled” it by our first measurement process. Hitting
the particle with one or morg-ray photons has knocked it into some other state, and
we do not even know which one. Therefore, we must either reprepare our system, or
else use a separate system whose preparation is identical to that of the first system. In
general we shall assume that we have an inexhaustible supply of identically prepared
systems. Therefore, we take a second photograph (on our second system) using the
same photographic plate. Then we photograph a third system, a fourth, etc., until we
have amassed a large number of images of the particle on the film. The distribution
of these images is given byf. (Sinceyr is always a real function for this system,
we do not need to bother with*vr.) Other states, likgr, y3, will lead to different
distributions of images. The results for the several states are depicted in Fig. 2-5. It
is obvious that the probability for finding the particle near the center of the box is
predicted to be much larger for the= 1 than the: = 2 state.

The probability for finding the particle at the midpoint of the “wire” in the- 2 state
approaches zero in the limit of our measurement becoming precise enough to observe
a single point. This troubles many students at first encounter because they worry about
how the particle can get from one side of the box to the other in th@ state. In fact,
this question can be raised for any state whose wavefunction has any nodes. However,
our discussion in the preceding paragraph shows that this question, like the question,
“Is an electron a particle or a wave when we are not looking?” has no meaningful
answer because no experiment can be conceived that would answer it. To test whether
or not the particle does travel from one side of the box to the other, we would have to
prepare the system in the= 2 state and measure the position of the particle enough
times so that we either (a) always find it on the same side (requires many measurements
for confidence), or (b) find it on different sides (requires at least two measurements).
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Figure 2-5 » 12 and observed particle distribution for the three lowest-energy and one high-energy
state of the particle in a one-dimensional box.

But for our question to be answered, the system must be in th2 state throughout
this entire experiment, and we have seen that the process of measuring particle position
prevents this. (If we find the particle first on the left and later on the right, we cannot
be sure it did not travel across the midpoint while the system was perturbed by the first
measurement.) Thus, the sketches in Fig. 2-5 are most safely regarded as a summary
of the results of measurements onearsembl®f systems.

Classically, since the particle has constant energy, hence constant speed, we would
expect the particle to spend equal time in each line segmebetween 0 and., but
Fig. 2-5 shows that the quantum system witk= 1 predicts that the particle spends
more time in segments near the center. It is characteristic of lower-energy states of
guantum-mechanical systems to display “anti-classical” distributions. With higher
quantum numbers, the distribution becomes difficult to distinguish from the distribution
predicted by classical physics (see Fig. 2-5). This is another example of the tendency
of quantum-mechanical predictions to approach classical predictions when one goes
toward the macroscopic realm (here largand therefore larg#).

EXAMPLE 2-2 Fora particle inthe = 2 state in a one-dimensional box of lendth
a) estimatethe probability,o, for finding the particle between= 0 andx = 0.20L.
b) calculatethe probability that you estimated in part a.

c¢) what probability for finding the particle betweers- 0 andx =0.20L is predicted
by classical physics?
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SOLUTION » a) The sketch ot/fz2 in Fig. 2-5 makes it clear that the probability for finding the
particle intherange 8 x < L/41s0.25 (equal to the area under the curve). The rarge 8 0.20L

is 20% shorter, and the missing 20% of the range is associated with a relatively large probability—
almost double the average in the range. That means we are missing nearly 40% of the probablity, so
slightly more than 60% remains. 60% of 0.25 is 0.15, so the probabkilify, the range 8- 0.20L

is slightly larger than 0.15.

b)
0.2L 2 0.2L 27 x
_ 20— 2 i (2
0 /0 Y5dx L/O Si ( 7 )dx
0.2L
(DG = (5)()
L 27 ) Jo L L
0.47
= l/ Sinzydy
7 Jo

1 1
= (from Appendix 1)~ {X — Zsin2y|Q4F }
T2 4

= 1 {O.Zn - }SinQSn}
T 4

= 0.20—- 1 sin0.87 =0.153
Az

c¢) The classical particle travels with constant speed, hence has a constant probability function. There-
fore, the probability for finding the particle any20% of the box is 0.20. |

2-2.C Symmetry of Wavefunctions

Inspection of Fig. 2-5 shows that the particle has equal probabilities for being observed
in the left half and right half of the box, regardless of state. This seems reasonable
because there is no physical factor discriminating between these halves. We shall now
show that the hamiltonian operator is invariant for a reflection through the box center,
and that a necessary consequence of this isytHads certain symmetry properties.

First, we show that is invariant. Reflection through the box center is accomplished
by replacingr by —x + L. We can define a reflection operat®rsuch thatrR /(x) =
f(—=x+ L); i.e., R reflects any function through a plane normaktatx = L/2 (see
Fig. 2-6).

Imagrnary ral RCIng plans

Figure 2-6 » A function f(x) and its mirror image reflected at= L /2.



36 Chapter 2 Quantum Mechanics of Some Simple Systems

The kinetic part of the hamiltoniarT;, is unchanged by:

h?  d? —h? d?
RT =R|—7—|=
[ 812m dxz] 872m d (—x + L)?
_h2 d2
T 8nZmdx2 (2-16)

where we have used the fact thatis constant and//d(—x) = —d/dx. That the
potential part ofHf is unchanged by reflection throudh' 2 is easily seen; the identical
infinite barriers merely interchange position. Therefak, =T andRV =V, and
RH=R(T+V)=RT+RV=T+V=H.

Now let us see what this means for eigenfunctiong/fofAssume we have a nor-
malized eigenfunctiony

Hy =Ey (2-17)

The two sides of Eq. (2-17) will still be equal if we reflect our coordinate system
throughout the equation. (If two functions are identical in one coordinate system, say
a right handed system, then they are identical in any coordinate system.) Thérefore,

(RH)(RY) = (RE)(RY) (2-18)

But E is simply a constant, and so it is immuneRo Furthermore, we have just seen
thatR H = H. Therefore,

H(RY) = E(RY) (2-19)

which shows that the functioRv is an eigenfunction off with the same eigenvalue
asy.

We have already mentioned that the eigenfunctions of this system are nondegenerate
with respect to energy. This is equivalent to saying that no two linearly independent
eigenfunctions having the same eigenvalue exist for this system. Butwe have just shown
thaty and Ry are both eigenfunctions having the same eigenvalugherefore, we
are forced to conclude thgt and Ry are linearly dependent, that is,

RY =cy (2-20)

wherec is a constant. A moment’s thought shows tiRat must still be normalized
(since reflecting a function does not change its area or the area under its square), and
it also must still be real (since reflecting a real function does not introduce imaginary
character). Therefore,

L L L
/(Rw/f)zdx=l=/ (cl/f)zdx=c2/ Y2dx = c? (2-21)
0 0 0

where we have made use of the fact thais normalized. Ifc> =1, thenc = +1 and

Ry =4y (2-22)

2The parentheses in Eg. (2-18) are meant to show the restricted extent of operatiofi vk is a departure
from the usual mathematical notational convention, but it is hoped that this temporary departure results in greater
clarity for the student.
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When Ry =+, as is the case fap1 or y3 (Fig. 2-4),v is said to besymmetri¢or
even for reflection. If Ry = —, as foryro, ¥ is said to beantisymmetric or odd
(A function that is neither symmetric nor antisymmetric is said tabgymmetricor
asymmetric Be careful to avoid confusing “asymmetric” with “antisymmetric.”)

We have proved a very important property of wavefunctidngeneral, if ¢ is the
wavefunction for a nondegenerate state, it must be symmetric or antisymmetric under
any transformation that leaveld unchanged.

2-2.D Orthogonality of Wavefunctions

Itis possible to show that integration over the product of two different particle-in-a box
eigenfunctionsy,, andi,,, must give zero as the result:

L
/ vfn l//mdx =0, n ?é m (2-23)
0

When functions have this property—that their product gives zero when integrated over
the entire range of coordinates—they are said takibogonal (Since the “box”
eigenfunctions vanish for <0 orx > L, integration from 0 ta_ suffices.)

We can use symmetry arguments to demonstrate orthogonality among certain pairs
of “box” eigenfunctions, for example)1 andy,. Figure 2-7 shows that, sinag;
is symmetric and)» is antisymmetric for reflection, the product of these functions is
antisymmetric. (In fact, it is not difficult to show in general that the product of two
symmetric or of two antisymmetric functions is symmetric, and that an antisymmetric
function times a symmetric function gives an antisymmetric product. See Problem 2-7.)
Integration over an antisymmetric functiotust give zeras the result since an antisym-
metric function has to have equal amounts of positive and negative area. Theygegfore,
andyro are orthogonal “by symmetry” as, indeed, are all the symmetric—antisymmetric
pairs of wavefunctions. Since ali’s having odd quantum numberare symmetric,
and ally’s having everr are antisymmetric, we have used symmetry to prgyend

Figure 2-7 » 11 IS symmetricyo is antisymmetric, angr1/2 is antisymmetric. The total signed
area bounded by the odd functions is zero since complete cancellation of positive and negative com-
ponents occurs.
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Figure 2-8 » The potential for a one-dimensional “box” with one infinite barrierat 0 and a
barrier ofV =U atx > L.

¥ orthogonal fom even andn odd. To show orthogonality for andm both even or
both odd requires doing the integral out explicitly (Problem 2-9).

The eigenfunctions (2-11) are orthogonal to each other and individually normalized,
and we refer to them agthonormalfunctions. Mathematically, this is summarized as

L
/ YnYmdx = { O.n#m } E8n,m (2'24)
0

1, n=m

The quantitys, ,, is called theKronecker delta functiorand it is merely a convenient
shorthand for the information in the braces.

EXAMPLE 2-3 1 andyrg are both symmetric functions. Therefore their produlct,
Y13, is symmetric. How, then, can the integral of this product vanish?

SOLUTION » A sketch of the product of these functions shows it to be symmetric, with negative
values in the central region and wings of positive values on each side. {Giracelyr3 are known to

be orthogonal, the negative region must exactly cancel the sum of the two positive regions (though
we wouldn’t know this for sure from a sketch). This shows that, whereas the integral over an
antismmetric integranchustequal zero, an integral over a symmetric (or unsymmetric) integrand
may or may not equal zero. <

2-3 The Patrticle in a One-Dimensional “Box”
with One Finite Wall

Let us now modify the system just discussed by lowering the potential on one side of
the “box” to some finite valué&/. The resulting potential is shown in Fig. 2-8. We can
think of a bead on a wire encountering infinite repulsior at0 and finite repulsion
for x > L. As before, it is convenient to break up the problem into separate regions of
x. For the regionx <0 whereV is infinite, v must be zero for the same reasons as
before (Section 2-1).

When the patrticle is in region | of Fig. 2-8, =0 and all is identical to our earlier
box. Therefore, in this region we will have harmonic waves of the general form

Y = Ay Sin(2x /A1) + B cOS2x /A1) (2-25)
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where we have used the form (1-24) in which the wavelength appears explicitly. As
before, the boundary condition thatvanish atx = 0 forcesB) to vanish, leaving

Y1 = Ay sin(2mx /1) (2-26)

For the moment we have no other boundary conditionypbecause we do not know
thaty equals zero at the finite barrier. We do know, however, that the wavelangth
whatever it turns out to be, will be related to the energy through

M=h/y/2m(E—-V)) (2-27)
and, sincg’; =0 (in region I),
M=h/V2mE (2-28)

which is a real number for positivé.
We now turn to region Il. Sinc& is constant here alsg; will again be a harmonic
wave. As before, we have our choice of two general forms:

Vi = Ay Sin(2x /An) + By co2mx /A1) (2-29)
or [see Eqg. (2-3)]
Y = Cy exp(+2mix /i) + Dy exp(—2mwix /Ay) (2-30)

There are two possibilities for the energy of the partidiez U andE > U. The first
of these corresponds to the classical situation where the particle has insufficient energy
to escape from the box and get into region Il. Let us see what quantum mechanics says
about this case in region II.

For this case) is imaginary since

A =h/2m(E—-U) (2-31)

and E — U is negative. Becausk, is imaginary, it is more convenient to use the
general form (2-30) because then iha the exponential argument can combine with
thei of A to produce a real argument. Let us assume thais equal toi times a
positivenumber. (This will not affect our results.)

Let us now examine the properties of the two exponential functions in Eq. (2-30).
The first exponential has an argument thaes (because thés cancel) and positive
(because of our above assumption).xAigicreases, this exponential increases rapidly,
approaching infinity. Since acceptable functions do not blow up like this, w€\set
equal to zero to prevent it. The second exponential has a negative, real argument, so it
decays exponentially toward zeroxaapproaches infinity. This is acceptable behavior,
and we are left with

Y = Dy exp(—2mix /) (2-32)

We now have formulas describing fragments of the wavefunction for the two regions.
All that remains is to join these togetherxat= L in such a way that the resulting
wavefunction is continuous at= L and has a continuous first derivative there. (Recall
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from Section 2-1 that this second requirement results from the fact that the potential is
finite atx = L. Henceys must be smooth at=L.)
The continuity requirement gives

Ay sin(2r L/ ) = Dy exp(—2wi L/ ) (2-33)

Taking the derivatives of, andv and setting these equalat L (to force smooth-
ness) gives

@/ M)A co2n L/A) = (=2mi/ ) Dy exp(—=2mil/Ay) (2-34)

The exponential term is common to both Egs. (2-33) and (2-34), providing the basis
for another equality:

Ay SiN@rL/A) = (— A /ir) cOS2w L/A)) (2-35)
or
tan(2 L/M) =ik /A (2-36)
Substituting forA; andA as indicated by Egs. (2-28) and (2-31) gives
tan(27 Lv2mE/h) = —vE/NU — E (2-37)

The only unknown in Eq. (2-37) is the total enerfy For given values of., m, and

U, only certain values of! < U will satisfy Eq. (2-37). Thus, the particle can have
only certain energies when it is trapped in the “box.” These allowed energies can be
found by graphing the left-hand side and right-hand side of Eq. (2-37) as functions of
E. The values ofE where the plots intersect satisfy Eq. (2-37). Figure 2-9 illustrates
the graphical solution of Eq. (2-37) for a particular set of valuedfor, andU.

Once avalue of is selected),| andx; are known [from Eqgs. (2-28) and (2-31)] and
it remains only to find4; andDy,. The ratio4, /Dy may be found from Eq. (2-33). The
numerical values off; and D), will then be obtainable if we require that the wavefunc-
tion be normalized. A set of such solutions is shown in Fig. 2-10.

Before solving for the case whet#e > U, let us discuss in detail the results just
obtained.

In the first place, the energies are quantized, much as they were in the infinitely deep
square well. There is some difference, however. In the infinitely deep well or box, the
energy levels increased with the square of the quantum numbdere they increase
less rapidly (the dashed lines in Fig. 2-10 show the allowed energy levels which result
whenU = oo) because the barrier becomes effectively less restrictive for particles with
higher energies (see the following). For the lowest solution, for example, slightly less
than one-half a sine wave is needed in one box width of distance. Thus, the wavelength
here is slightly longer than in an infinitely deep well of equal width, and so, by de
Broglie’s relation, the energy is slightly lower. Notice that the effect of lowering the
height of one wall is least for the levels lying deepest in the well.

The solutions sketched in Fig. 2-10 indicate that there is a finite probability for
finding the particle in the regiom > L even though it must have a negative kinetic
energy there. Thus, quantum mechanics allows the particle to penetrate into regions
where classical mechanics claims it cannot go. Notice that the penetration becomes
more appreciable as the energy of the particle approaches that of the barrier. This results
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Figure 2-9 » Graphical solution of the equationtan(2r L/2mE/h) = /E//U —E. Here
L =250 nm,m=911x 1031 kg, U =1 eV =16.02 x 10720 J. Intersections occur & =
0.828x 10720 3,330x 10720, 7.36x 10720 Jand 128 x 10720 J.

from the fact thatt — U determines the rate at which the exponentiafjndecays
[see Egs. (2-31) and (2-32)]. In the limit thet— oo, the wavefunction vanishes at
the barrier, in agreement with the results of the infinite square well of Section 2-1.

If the barrier in Fig. 2-8 has finite thicknesg pecomes zero again at, say=2L1),
then there is a finite probability that a particle in the well will penetrate through the
barrier and appear on the other side. This phenomenon is cpliettum-mechanical
tunneling and this is the way, for example, arparticle escapes from a nucleus even
though it classically lacks sufficient energy to overcome the attractive nuclear forces.
We emphasize that the tunneling referred to in this example is really not a stationary
state phenomenon. We haveiaitial condition (particle in the well) and ask what the
half-life is for the escape of the particle—a time-dependent problem.

We saw earlier that the energy quantization for the particle in the infinitely deep well
could be thought of as resulting from fitting integral numbers of half sine waves into
a fixed width. Most sine waves just will not fit perfectly, and so most energies are not
allowed. In this problem the waves are allowed to leak past one of the well walls, but
we can still see why only certain energies are allowed. Suppose that we pick some
arbitrary energy for the particle. We know thag must be zero at the left wall of the
well wherelV = co. Starting there, we can draw a sine wave of wavelength determined
by E across the well to the right wall, as shown in Fig. 2-11. When the wave hits the
right wall, it must join on smoothly to a decaying exponential, which also depends on
E. Most of the time, it will be impossible to effect a smooth junction, and that particular
value of £ will be disallowed.

Let us now consider the case whefe- U. In region |, the considerations are the
same as before. Thett, is a sine wave that can be drawn from the left wall and has a
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Figure 2-10 » Solutions for particle in well with one finite wall (see Fig. 2-9 for details). Dashed
lines correspond to energy levels which would exigt i oco.

wavelength determined b (= 7') from de Broglie’s relation. This sine wave arrives
atx = L with a certain magnitude and a certain derivative (assuming that the multiplier
A1 has been fixed at some arbitrary value). In region Il, we also have a solution of the
usual form

Y (x) = Ay sin(rx /An) + B cos2mx /) (2-38)

wherel is real and determined by — U, which is now positive. The question is, can

we always adjust (by changing4; andB,) so that it has the same value and slope
atx = L thaty, has? A little thought shows that such adjustment is indeed always
possible. The two adjustments allowedyin correspond to a change phasefor

(a shift in the horizontal direction) and a changeimplitudefor ;. The only thing
abouty, we cannot change is the wavelength, since this is determinéd-b{/. This

is just a physical description of the mathematical circumstance in which we have two
adjustable parameters and two requirements to fit—a soluble problem. The essential
difference between this case and that of the trapped particle is that here we have fewer
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Figure 2-11 » An example of partial wavefunctions for an arbitrary enefgy These functions
cannot be joined smoothly at= L and so this value of is not allowed.

boundary conditions. Before, our square-integrability requirement was used to remove
a positive exponential term. That requirement is, in effect, a boundary condition—
must vanish at = co—and it led to energy quantization. Then we used the normality
requirement to achieve unique values forand Dy. In this case we cannot get a
square-integrable solutiony; goes on oscillating as — oo, and so we have no
boundary condition there. As a resulf,is not quantized ang is not normalizable,
so that only ratios of4;, 4, and B, are obtainable.

The energy scheme for the particle in the potential well with one finite wall, then, is
discrete wherE < U, and continuous whef > U.

Notice the way in which the wavelengths vary in Fig. 2-10. We have already seen
that the time-independent Sdiinger equation states that the total energy for a particle
in a stationary state is the same at all particle positions (ieanatant of motion The
kinetic and potential energies must vary together, then, in such a way that their sum is
constant. This is reflected by the fact that the wavelength of an unbound solution is
shorter in region | than it is in region II. In region ¥, = 0, so that all energy of the
particle is kinetic { = E). Inregion I,V > 0, so that the kinetic energf'(= E — V)
is less than it was in region |. Therefore, the de Broglie wavelength, which is related to
kineticenergy, must be greater in region II.

EXAMPLE 2-4 For the system described in the caption for Fig. 2-9, calculate|the
percentage drop of the lowest-energy state that results from barrier penetratjon.

SOLUTION » For this, we need to solve the problem for the simple particle-in-a-box system
(for which U = o0).
n2h? (1)2(6.626x 1034792

- = =9.64x 10721
8mL2  8(9.11x 10-31kg)(2.500x 10-10m)2 x

£

compared to 28 x 10-21J. Barrier penetration lowets; by 14%. <
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D 2-4 The Patrticle in an Infinite “Box” with
a Finite Central Barrier

Another example of barrier penetration in a stationary state of a system is provided by
inserting a barrier of finite height and thickness at the midpoint of the infinite square
well of Section 2-1 (see Fig. 2-12).

The boundary conditions for this problem are easily obtained by obvious extensions
of the considerations already discussed. Rather than solve this case directly, we shall
make use of our insights from previous systems to deduce the main characteristics of
the solutions. Let us begin by considering the case where the barrier is infinitely high.

i i
___i_m
o _
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Figure 2-12 » (&) Solutions for identical infinite square wells. (b) Effect of finite partition on half
waves. (c) Symmetric combination of half waves. (d) Antisymmetric combination of half waves.



Section 2-4 The Particle in an Infinite “Box” with a Finite Central Barrier 45

Then the problem becomes merely that of two isolated infinite square wells, each well
having solutions as described in Sections 2-1 and 2-2.

Now, as the height of the barrier is lowered from infinity, what happens? The levels
lying deepest in the two sections should be least affected by the change. They must
still vanish at the outer walls but now they can penetrate slightly into the finite barrier.
Thus, the lowest state in, say, the left-hand section of the well will begin to look as
given in Fig. 2-12b. The solution on the right side will do likewise, of course. As
this happens, their energies will decrease slightly since their wavelengths increase.
However, since the two wells are no longer separated by an infinite barrier, they are no
longer independent. We can no longer talk about separate solutions for the two halves.
Each solution for the Schdinger equation is now a solution for the whole system from
x =—L to+L. Furthermore, symmetry arguments state that, since the hamiltonian for
this problem is symmetric for reflection through= 0, the solutions, if nondegenerate,
must be either symmetric or antisymmetric through 0.

This requirement must be reconciled with the barrier-penetration behavior indicated
by Fig. 2-12b, which is also occurring. One way to accomplish this is by summing the
two half waves as shown in Fig. 2-12c, giving a symmetric wavefunction. Alternatively,
subtraction gives the antisymmetric form shown in Fig. 2-12d. Both of these solutions
will be lower in energy than their infinite-well counterparts, because the wavelengths
in Fig. 2-12c and d continue to be longer than in 2-12a. Will their energies be equal to
each other? Not quite. By close inspection, we can figure out which solution will have
the lower energy.

In Figs. 2-12b to 2-12d, the slopes of the half wave, the symmetric, and the antisym-
metric combinations at the finite barrier are labeled respectively’, andm”. What
can we say about their relative values? The slapshould be less negative than
because the decaying exponential produeingas an increasing exponential added to
it when producingn’. Slopem” should be more negative thansince the decaying
exponential has an increasing exponential subtracted from it indasa&using it to
decay faster. This means that the sine curve on the left-hand side of Fig. 2-12c cannot
be identical with that on the left side of Fig. 2-12d since they must arrive at the barrier
with different slopes. (The same is true for the right-hand sides, of course.) How
can we make the sine wave arrive with a less negative sidpe-by increasing the
wavelength slightly so that not quite so much of the sine wave fits into the left well
(see Fig. 2-13a). Increasing the wavelength slightly means, by de Broglie’s relation,
that the energy of the particle is decreased. Similarly, the sine curve in Fig. 2-12d must
be shortened so that it will arrive at the barrier with slap& which corresponds to
an energy increase. Of course, now that the energy has changed outside the barrier, it
must change inside the barrier too. This would require going back and modifying the
exponentials inside the barrier. But the first step is sufficient to indicate the qualitative
results: The symmetric solution has lower energy. In Fig. 2-13a is a detailed sketch of
the final solution for the two lowest states.

There is a simpler way to decide that the symmetric solution has lower energy. As
the barrier height becomes lower and lower, the two solutions become more and more
separated in energy, but they always remain symmetric or antisymmetric with respect to
reflection since the hamiltonian always has reflection symmetry. In the limit when the
barrier completely disappears we have a simple square well again (butlarger), the lowest
solution of which is symmetric. (See Fig. 2-13b.) This lowest symmetric solution must
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Figure 2-13 » (&) Detailed sketch of the two lowest solutions for the infinite square-well divided
by a finite barrier at the midpoint. The waves are sketched from a common energy value for ease of
comparison. Actually, the symmetric wave has a lower energy. (b) A correlation diagram relating
energies when the barrier is infinite (left side) with those when the barrier vanishes. Letters A and S
refer to antisymmetric and symmetric solutions, respectively.

“come from” the symmetric combination of smaller-well wavefunctions sketched at the
left of Fig. 2-13b; similarly, the second lowest, antisymmetric solution of the large well
correlates with the antisymmetric small-well combination (also at left in Fig. 2-13b).

A figure of the kind shown in Fig. 2-13b is callectarrelation diagram It shows how

the energy eigenvalues change throughout a continuous, symmetry-conserving process.
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We shall see that the correlation of wavefunction symmetries in such a manner as this
is a powerful technique in understanding and predicting chemical behavior.

The splitting of energy levels resulting from barrier penetration is an extremely
pervasive phenomenon in quantum chemistry. Itoccurs regardless of whether the barrier
separates identical or nonidentical potential regions, i.e., regardless of whether the final
system is symmetric or unsymmetric. When two atoms (N and N, or C and O) interact
to form a molecule, the original atomic wavefunctions combine to form molecular
wavefunctions in much the same way as was just described. One of these molecular
wavefunctions may have an energy markedly lower than those in the corresponding
atoms. Electrons having such a wavefunction will stabilize the molecule relative to the
separated atoms.

Another case in which energy level splitting occurs is in titational spectrum
of ammonia. Ammonia is most stable in a pyramidal configuration, but is capable
of inverting through a higher-energy planar configuration into an equivalent “mirror
image” pyramid. Thus, vibrations tending to flatten out the ammonia molecule occur
in a potential similar to the double well, except that in ammonia the potential is not
discontinuous. The lowest vibrational energy levels are not sufficiently high to allow
classical inversion of ammonia. However, these vibrational levels are split by inter-
action through barrier penetration just as quantum mechanics predicts. The energy
required to excite ammonia from the lowest of these sublevels to its associated sublevel
can be accurately measured through microwave spectroscopy. Knowledge of the level
splittings in turn allows a precise determination of the height of the barrier to inversion
in ammonia (see Fig. 2-14).

Itis easy to anticipate the appearance of the solutions for the square well with central
barrier for energies greater than the partition height. They will be sinusoidal waves,
symmetric or antisymmetric in the well, and vanishing at the walls. Their wavelengths
will be somewhat longer in the region of the partition than elsewhere because some of
the kinetic energy of the particle is transformed to potential energy there. A sketch of
the final results is given in Fig. 2-15.

EXAMPLE 2-5 Fig. 2-15 shows energy levels for states when the barrier has fjnite
height. When the barrier is made infinitely high, the level&atand E> merge
into one level. Where does the energy of that one level lie—bdgnbetween
E1 and E», or aboveE,—and why?

SOLUTION » Itlies aboveE>. When the barrier is finite, there is always some penetration, so
A is always at least a little larger than is the case for the infinite barrierisifarger,E is lower. <

D 2-5 The Free Particle in One Dimension

Suppose a particle of magsmoves in one dimension in a potential that is everywhere
zero. The Schadinger equation becomes

—h? d?%y
- ' —F 2-39
872m dx? v ( )
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Figure 2-14 » Sketch of potential for inversion vibrational mode in ammonia. The lowest levels
are split by tunneling. The low energy transititrE is visible in the microwave region whereas the
second transition > is visible in the infrared A E1 = 0.16 x 10722 J; AEy = 7.15x 10722 ].

which has as solutions
W = Aexp(£27iN2m Ex/ h) (2-40)
or alternatively, trigonometric solutions
W = A'sin2r~2mEx/h), W =A cos2r2mEx/h) (2-41)

As is most easily seen from the exponential forms (2-40¥ ifs negative, s will

blow up at either+oo or —oo, and so we reject negative energies. Since there are
no boundary conditions, it follows thdt can take on any positive value; the energies

of the free particle are not quantized. This result would be expected from our earlier
results on constrained particles. There we saw that quantization resulted from spatial
constraints, and here we have none.

The constantst and A’ of Egs. (2-40) and (2-41) cannot be evaluated in the usual
way, since the solutions do not vanishxat +co. Sometimes it is convenient to
evaluate them to correspond to some experimental situation. For instance, suppose that
one was working with a monoenergetic beam of electrons having an intensity of one
electron every 10° m. Then we could normaliz¢ of Eq. (2-40) so that

10%m
f lW|%dx =1
0

There is a surprising difference in the particle distributions predicted from expres-
sions (2-40) and (2-41). The absolute square/ of the exponentials is a constant
(4* 4), whereas the squares of the trigonometric functions are fluctuating functions
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Figure 2-15 » Wavefunctions for the infinite square well with finite partition.

of x. It seems sensible for a particle moving without restriction to have a constant
probability distribution, and it seems absurd for it to have a varying probability distribu-
tion. What causes this peculiar behavior? It results from there being two independent
solutions for each value df (exceptE = 0). This degeneracy with respect to energy
means that from a degenerate pairand+’, one can produce any number of new
eigenfunctionsy” = ayr + by’ (Problem 2-11). In such a situation, the symmetry
proof of Section 2-2 does not hold. However, there will always be an independent pair
of degenerate wavefunctions theitl satisfy certain symmetry requirements. Thus, in
the problem at hand, we have one pair of solutions, the exponentials, which do have
the proper symmetry since their absolute squares are constant. From this pair we can
produce any number of linear combinations [one set being given by Eq. (2-41)], but
these need not display the symmetry properties anymore.

The exponential solutions have another special attribute: A particle whose state is
described by one of the exponentials has a definite linear momentum, whereas, when
described by a trigonometric function, it does not. In Section 1-9, it was shown that
the connection between classical and wave mechanics could be made if one related the
classical momentumy,, with a quantum mechanical operai@y/2ri)d/dx. Now,
for a particle to have a definite (sharp) valpdor its momentum really means that,
if we measure the momentum at some instant, there is no possibility of getting any
value other thamp. This means that the particle in the state describegt lajwayshas
momentump, no matter where it is ix; i.e., its momentum is a constant of motion,
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just as its energy is. This corresponds to saying that there is an eigenvalue equation for
momentum, just as for energy. Thus

h dy
2ni dx
The statement made earlier, that the exponential solutions correspond to the particle

having sharp momentum, means that the exponentials (2-40) must be solutions to
Eq. (2-42). This is easily verified:

zia;i |:Aexp(:|:2m\h/2mEx):|=im|:AeXp(:l:2m\h/2mEx):|
i dx

py (2-42)

Thus, the positive and negative exponential solutions correspond to momentum values
of ++v/2mE and —v/2m E, respectively, and are interpreted as referring to particle
motion toward-+oo and —oo respectively. Since energy is related to the square of
the momentum, these two solutions have identical energies. (The solutidh=fdy
corresponds to no momentum at all, and the directional degeneracy is removed.) A
mixture of these states contains contributions from two different momenta but only one
energy, so linear combinations of the exponentials fail to maintain a sharp value for
momentum but do maintain a sharp value for energy.

EXAMPLE 2-6 An electron is accelerated along the x axis towaresoo from rest
through a potential drop of 1.000 kV.

a) What is its final momentum?

b) What is its final de Broglie wavelength?

c) What is its final wavefunction?

SOLUTION » @) py = v2mE = [2(9.105 x 10731 kg)(1.602 x 10-163)11/2 = 1.708 x
10028 kgms?!

_h_ _ 6626x1034Js _ —11
b)A = = T70810 Bigms T — >0 9x 107 m

C) ¥ = Aexp(+2ri+/2m Ex/h)(chooset because moving towards= +00) = 4 exp(2rip/ h)x
= Adexp2mix /L) = Aexp2ri(2.578x 1010 m~1)x]. <

D 2-6 The Particle in a Ring of Constant Potential

Suppose that a particle of massis free to move around a ring of radiusand zero
potential, but that it requires infinite energy to get off the ring. This system has only
one variable coordinate—the angleIn classical mechanics, the useful quantities and
relationships for describing such circular motion are those given in Table 2-1.
Comparing formulas for linear momentum and angular momentum reveals that the
variables mass and linear velocity are analogous to moment of inertia and angular veloc-
ity in circular motion, where the coordinagereplacesc. The Schodinger equation
for circular motion, then, is

—h? d*y (¢)
872 dg2 =Ey(¢) (2-43)
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TABLE 2-1 »

Quantity Formula Units
Moment of inertia I =mr? gcn? or kg n?
Angular velocity w=A¢/At=v/r st

Angular momentum (linear mvr =Ilw gcni/sorergsorJs

momentum times orbit radius)

which has, as solutions

Aexp(Like) (2-44)
or alternatively
A’ sin(ke) (2-45)
and
A’ coske) (2-46)

where [substituting Eq. (2-45) or (2-46) into (2-43) and operating]
k=2n~2IE/h (2-47)

Let us solve the problem first with the trigonometric functions. Starting at some
arbitrary point on the ring and moving around the circumference with a sinusoidal func-
tion, we shall eventually reencounter the initial point. In order that our wavefunction
be single valued, it is necessary thiatepeat itself every timg changes by 2 radians.
Thus, forg given by Eq. (2-45),

sin(k¢) = sinfk(¢ + 27)] (2-48)
Similarly, for ¢ given by Eq. (2-49)
cosk¢) =coskeop + 2km) (2-49)

Either of these relations is satisfied onlyifs an integer. The case in whiéh=0 is
not allowed for the sine function since it then vanishes everywhere and is unsuitable.
However,k =0 is allowed for the cosine form. The normalized solutions are, then,

¥ = (1//m)sintkp), k=1,2,3,...
¥ = (1//m)coske), k=1,23,...
Y= (1/@) (from thek = 0 case for the cosine (2-50)

Now let us examine the exponential formwf(Eq. 2-44). The requirement that
repeat itself fokp — ¢ + 27 gives

Aexp(tikg) = AexdLik(¢p + 2n)] = Aexp(Like) exp(£2rik)



52 Chapter 2 Quantum Mechanics of Some Simple Systems

or
exp(E£2rik)=1
Taking the positive case and utilizing Eg. (2-3), we obtain
cog2rk)+isin2rk)=1 or co%2rk)=1 and sin27k)=0
Again, k must be an integer. (The same result arises by requiringithai¢ repeat
for ¢ — ¢ 4+ 27r.) Thus, an alternative set of normalized solutions is
v = (1/\/5) explikg) k=0,+1 +2 43, ... (2-51)
The energies for the particle in the ring are easily obtained from Eq. (2-47):
E=k?h?/87%I, k=0,+1, 42 +3,... (2-52)

The energies increase with the square pfust as in the case of the infinite square
well potential. Here we have a single state wih= 0, and doubly degenerate states
above, whereas, in the square well, we had no solutiégh-a0, and all solutions were
nondegenerate. The solutionAt= 0 means that there is no finite zero point energy
to be associated with free rotation, and this is in accord with uncertainty principle
arguments since there is no constraint in the coordigate
The similarity between the particle in a ring and the free particle problems is strik-

ing. Aside from the fact that in the ring the energies are quantized and the solutions
are normalizable, there are few differences. The exponential solutions (2-51) are

eigenfunctions for th@ngular momentum operatay:/2wi)d /d¢. The two angular

momenta for a pair of degenerate solutions correspond to particle motion clockwise or

counterclockwise in the ring. (The nondegenerate solutiorEfer0 has no angular

momentum, hence no ability to achieve degeneracy through directional behavior.) The

particle density predicted by the exponentials is uniform in the ring, while that for the
trigonometric solutions is not. Since the trigonometric functions tend to localize the
particle into part of the ring, thereby causing £ oo, it is consistent that they are
impure momentum statea (ang. mom.# 0). (Infinite uncertainty in the coordinate
¢ means that all values @f in the range 0—2 are equally likely.)

EXAMPLE 2-7 Demonstrate that any two degenerate exponential eigenfunctions
for a particle in a ring are orthogonal.

SOLUTION » Such a pair of degenerate wavefunctions can be written,as ﬁ expike),

1 _; * _
Yo = Nezd exp(—ik¢). These are orthogonalj[)z” ¥’ ¥— d¢ = 0where we must use the complex

conjugate of either one of the wavefunctions sitics complex. Buty} =, so
2 1

1 2n 2 )
Vobdg = o / exp(—2i) dp = — / [cox2¢) — i Sin(2)1d
7 Jo 21 Jo

1r.
= o [sin@e)§T — i~ cos29) 3" |

= %[sin(%) —sin(0) +i cog4r) —i coq0)]

1
= _—[0—0+4i—i]=0.
2
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D 2-7 The Patrticle in a Three-Dimensional

Box: Separation of Variables

Let us now consider the three-dimensional analog of the square well of Section 2-1.
This would be a three-dimensional box with zero potential inside and infinite potential
outside. As before, the particle has no probability for penetrating beyond the box.
Therefore, the Scldinger equation is just

—h? (8% 9% 97

872m <3x2+8y2+822)w_E1/f (2-53)
andyr vanishes at the box edges.

The hamiltonian operator on the left side of Eq. (2-53) can be written as a sum of

operators, one in each variable (e.H, = (—h?/87°m)3?/dx?). Let us assume for
the moment that/ can be written as a product of three functions, each one being a
function of a different variablex, y, or z (i.e., v = X(x)Y (y)Z(z)). If we can show
that such a/ satisfies Eq. (2-53), we will have a much simpler problem to solve. Using
this assumption, Eq. (2-53) becomes

(Hy+Hy+ H)XYZ=EXYZ (2-54)
This can be expanded and then divided throug®Z to obtain

H XYZ + H,XYZ H,XYZ
XYZ XYZ XYZ

Now, sinceH,, for example, operates only on functionsxgfbut noty or z, we
can carry out some limited cancellation. Those functions thanateperated on
in a numerator can be canceled against the denominator. Thosadltgierated on
cannot be canceled since these are differential operators [e(f)/xin/x?/dx it is not
permissible to cancel/k againstx? before differentiating:(1/x)dx2/dx # dx /dx].
Such cancellation gives

H.X H)Y H.Z

X Y Z
Now, suppose the particle is moving in the box parallel toithgis so that the variables
y andz are not changing. Then, of course, the functirendZ are also not changing,

S0 H,Y/Y andH.Z/Z are both constant. Onl¥f, X/ X can vary—butoesit vary?
Not according to Eq. (2-56), which reduces under these conditions to

=FE (aconstant (2-55)

=F (aconstant (2-56)

X

+ constantt constant= £ (a constant (2-57)

Therefore, even though the particle is moving inthdirection, H, X/ X must also be a
constant, which we shall cafl,. Similar reasoning leads to analogous constaptsnd
E.. Furthermore, the behavior &f; X/ X must really be independent of whether the
particle is moving parallel to the andz axes. Even ify andz do change, they do not
appear in the quantityf, X/ X anyway. Thus we may write, without restriction,

H X HyY_E HZ

_E7 S )
X * Y Y VA

E, (2-58)
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and, from Eq. (2-56),
Ex+E,+E.=E (2-59)

Our original equation in three variables has been separated into three equations, one in
each variable. The first of these equations may be rewritten

H. X=E X (2-60)

which is just the Scludinger equation for the particle in the one-dimensional square
well, which we have already solved. For a rectangular box witk- L, # L. we have
the general solution

Y =XYZ=1/2/LysinN(nymx/Ly)\/2/Lysin(n,wy/Ly)/2/L-sin(n.z/L:)
(2-61)
and
E=E,+E,+ E. = (h*/8m) <n§/L§ +n2/L2 + nf/Lf) (2-62)
For a cubical box/., = L, = L. =L, and the energy expression simplifies to
E = (h?/8mL?) (n)zc—i—n?,—l—nf) (2-63)
The lowest energy occurs whep=n,=n.=1, and so
E1(1)=3h%/8mL? (2-64)

Thus, the cubical box has three times the zero point energy of the corresponding one-
dimensional well, one-third coming from each independent coordinate for motion (i.e.,
“degree of freedom”). The one in parentheses indicates that this level is nondegenerate.
The next level is produced when one of the quantum numbéras a value of two

while the others have values of one. There are three independent ways of doing this;
therefore, the second level is triply degenerate, Ap@) = 642/8m L?. Proceeding,
E3(3)=9h2%/8mL?, E4(3) =11h%/8m L?, E5(1) =12h?/8m L?, E¢(6) =14h%/8m L2,

etc. Apparently, the energy level scheme and degeneracies of these levels do not proceed
in the regular manner which is found in the one-dimensional cases we have studied.

EXAMPLE 2-8 Verify that Eg is six-fold degenerate.

SOLUTION »  Eg = 14h?/8mL?, son% +n% + n? = 14. There is only one combination of
integers that satisfies this relation, namely 1, 2, and 3. So we simply need to deduce how many
unigue ways we can assign these integevs,to: ,, andn.. There are three ways to assign 1. For

each of these three choices, there remain but two ways to assign 2, and then there is only one way
to assign 3. So the number of unique ways is 3x 1=6. (Or one can simply write down all of

the possibilities and observe that there are six of them.) <

We shall now briefly consider what probability distributions for the particle are
predicted by these solutions. The lowest-energy solution has its largest value at the
box center where all three sine functions are simultaneously largest. The particle
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Figure 2-16 » Sketches of particle probability distributions for a particle in a cubical box.
@ny=ny=n,=1. O)ny=2,ny=n;=1. (C)ny =ny=n;=2.

distribution is sketched in Fig. 2-16a. The second level may be produced by setting
ny =2, andn, =n;=1. Then there will be a nodal plane running through the box
perpendicular to the axis, producing the split distribution shown in Fig. 2-16b. Since
there are three ways this node can be oriented to produce distinct but energetically
equal distributions, this energy level is triply degenerate. The particle distribution for
the state where, =n, =n, =2 is sketched in Fig. 2-16¢. It is apparent that, in the
high energy limit, the particle distribution becomes spread out uniformly throughout
the box in accord with the classical prediction.

The separation of variables technique which we have used to convert our three-
dimensional problem into three independent one-dimensional problems will recur in
other quantum-chemical applications. Reviewing the procedure makes it apparent that
this technique will work whenever the hamiltonian operator can be cleanly broken into
parts dependent on completely different coordinates. This is always possible for the
kinetic energy operator in cartesian coordinates. However, the potential energy operator
often prevents separation of variables in physical systems of interest.

It is useful to state the general results of separation of variables. Suppose we have
a hamiltonian operator, with associated eigenfunctions and eigenvalues:

Hyi = Eipr; (2-65)
Suppose this hamiltonian can be separated, for example,
H(a, B) = Hy (o) + Hp (B) (2-66)
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wherea and g stand for two different coordinates or groups of coordinates. Then it

follows that
Vik=fj(@) g(B) (2-67)
where
Hyfj=a;f; (2-68)
and
Hpgr = by gk (2-69)
Furthermore,
Ejr=a;+b; (2-70)

In other words, if a hamiltonian is separable, then the eigenfunctions wilkdsiicts
of eigenfunctions of the subhamiltonians, and the eigenvalues wiiupesof the
subeigenvalues.

D 2-8 The Scattering of Particles in One Dimension

Consider the potential shown in Fig. 2-17a. We imagine that a beam of particles, each
having energyE, originates from the left and travels toward= oo, experiencing a
constant potential everywhere except at the potential step-&. We are interested in
what becomes of these particles—what fraction makes it all the way to the “end” (some
kind of particle trap to the right of the step) and what fraction is reflected back toward
x = —oo. Problems of this type are related to scattering experiments where electrons,
for example, travel through potential jumps produced by electronic devices or through
a dilute gas where potential changes occur in the neighborhood of atoms.

This kind of problem differs from most of those discussed earlier because the particle
is not trapped (classically), so all nonnegative energy values are possible. We already
know what the form of the eigenfunctions is for the constant potentials to the left and
right of the step for any choice af. On the left they are linear combinations of
exp(xiv/2mEx/h), whereh = h/2m, and to the right they are linear combinations
of exp(xiv/2m(E — U)x/k). The only thing we do not yet know is which linear
combinations to take. That is, we need to fihdB, C, andD in

Vet = Aexplikx /h) + Bexp(—ikx/h), x <0, k=+2mE (2-71)
Vright = C exp(ik'x /h) + Dexp(—ik'x/k), x>0, k'=y2m(E—-U) (2-72)

We have seen earlier that the exponentials having positive arguments correspond to
particles traveling from left to right, etc. We signify this with arrows in Fig. 2-17a.

The nature ofijignt is qualitatively different depending on whethgris larger or
smaller than the step height. If £ < U, the exponential arguments become real.
One of the exponentials decays and the other explodesraseases, just as we saw
in Section 2-3. We discard the exploding exponential. The decaying exponential on
the right must now be made to join smoothly onttgy; at the step. That igjess and
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Figure 2-17 » (@) A potential step of height/ at x =0. (b) A wavefunction havingz = U/2.

(c) Fraction of particles reflected as a functionfof(d) Fraction of particles transmitted as a function
of E. (Note: The vertical line at left of parts (a) and (b) is not a barrier. It is merely an energy
ordinate.)

Vright must have the same value and slopecat O (Fig. 2-17b). This means that
(fch2:eqn2-72 must havesal value and slope at the step, which forces it to be a
trigonometric wave. Because there is no additional boundary condition farther left, this
trigonometric wave can always be shifted in phase and amplitude to join smoothly onto
the decaying exponential at the right. (Compare Fig. 2-17b to Fig. 2-11.) The final
values of4 and B are simply those that give the appropriate phase and amplitude.

The ratio4* 4/ B* B is the relative fluxes of particles traveling toward the right or
left in the region to the left of the step. |lfl| = | B|, the fluxes are equal, corresponding
to total reflection of the beam from the step potential.

It is not difficult to show (Problem 2-24) tha#d| = | B| whenevery ey has real
value and slope at any point, i.e., for any trigonometric wave, and so the potential of
Fig. 2-17a gives total reflection if < U. (The fact that some particle density exists
atx > 0 due to barrier penetration does not affect this conclusion. The evaluation of



58 Chapter 2 Quantum Mechanics of Some Simple Systems

extent of reflection assumes that a time-independent (steady-state) situation has been
achieved, so the penetration population remains constant and none of the new particles
entering from the left are “lost” due to barrier penetration.)

The situation changes when we consider case& ferU. For any suctf, we now
have two acceptable exponential functions on both the right and the left. We proceed
by realizing that the function with coefficied in vright should be rejected since it
corresponds to particles traveling from right to left, i.e., to particles that have been
reflected from the trap. But we assume the trap to be 100% effective, so once again we
have only one term inyignt As before, we set about forcing the values and slopes of
Egs. (2-71) and (2-72) (witld = 0) to be equal at = 0. This time, however, there is
no requirement that these values be real. We arrive at the relations (Problem 2-25)

B _k—K __ C 2%

= d— = 2-73
A kR N T e (2-73)
The extent of reflection is equal to
BR  (k—K)?
% = % (2-74)
|A| (k+ k")

This can be seen to range from zero, whkes &, to one, whet’ =0. k' = k whenE =
E—U,i.e.,whenU is negligible compared tf. So zero reflection (total transmission)
is approached in the high-energy limit. Only whEg= U doeskt’ =0, so total reflection
occurs only whenE equals the barrier height (or, as we saw previously, is lower).
A plot of the fraction of particles reflected versdg U appears in Fig. 2-17c. The
transmission, equal to 1.0—reflection, is plotted in Fig. 2-17d.

The approach represented by this scattering problem is to identify the two terms
that can contribute to the wavefunction in each region; then to recognize that one of
the terms in one region is lost, either because it explodes or because it corresponds
to reflection from the particle trap; then to force a smooth junction at the position of
the discontinuity in the potential; and finally to draw conclusions about reflection and
transmission from the values of the absolute squares of the coefficients. Notice that,
for E > U, we could just as well have postulated the beam to be coming from the
right, with the trap at the left. This would lead us to get 0 in Eq. (2-71). Even in
cases like this, where the particles are passing over the edge of a potential cliff, there
is backscatter (Problem 2-26).

An additional feature appears when we consider potentials that change at two points
in x, as in Fig. 2-18a. The solution now involves three regions and two places-¢)
whereyr anddy/dx must be made equal. As before, we decide where the particle
source and trap are and set one coefficient equal to zeroa@{kapetailed solution
of this problem is tediou3. For our purposes, it is the nature of the result that is
important. The extent of transmission as a functiorEglU is plotted in Fig. 2-18b.
There are two obvious ways this differs from the step-potential transmission function
of Fig. 2-17d: First, some of the particles are transmitted even when their energy is less
thanU. This is the result of barrier penetration leading to finite particle density at the
right-hand side of the barrier transmission due to tunneling. (The extent of tunneling
transmission depends on the thickness of the barrier.) Second, there are oscillations

3See Merzbacher [2, Chapter 6].
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Figure 2-18 » (@) A rectangular-hill potential of heightt and width 2. (b) Fraction of beam
transmitted as a function &/ U, whereU =h2/27r2ma2.

in the transmission function fat > U, with 100% transmission occurring at intervals

in E instead of only in the infinite limit. These come about because of interference
between waves reflecting off the front and back edges of the barrier. This is most easily
understood by recognizing that 100% transmission corresponds to no reflection, so then
B =0. This occurs when the wave reflecting back from —a is of opposite phase

to that reflecting back from = +a, and this happens whenever there is an integral
number of de Broglie half-wavelengths betweea —a anda. At energies where this
happens, the beam behaves as though the potential barrier is not there.

The variation of reflection from thin films (e.g., soap bubbles) of light of different
wavelengths results in the perception of colors and is a familiar example of scattering
interference. Less familiar is the variation in reflection of a particle beam, outlined
above. However, once we recognize the wave nature of matter, we must expect particles
to manifest the same sort of wave properties we associate with light.

D 2-9 Summary
In this chapter we have discussed the following points:

1. A particle constrained in the classical sense (i.e., lacking the energy to overcome
barriers preventing its motion over the entire coordinate range) will have quantized
energy levels and a finite zero-point energy. In the mathematical analysis, this arises
from requirements ogl at boundaries.
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2. ¢ can be nonsmooth, or cusped, whEres infinite at a point. 1V is infinite over
a finite rangeyr must be zero there.

3. Nondegenerate eigenfunctions Bfmust be symmetric or antisymmetric for any
operation that leaved unchanged.

4. | |2 may be regarded as a statistical measure—a summary of many measurements
of position on independent, but identically prepared, systems.

5. Quantum-mechanical predictions approach classical predictions in the limits of
large E, or large mass, or very high quantum number values.

6. Integrals with antisymmetric integrands must vanish.

7. |¥|? does not vanish in regions whee> E if V is finite. This is called “barrier
penetration.”

8. One-dimensional motion of a free particle has a continuum of energy levels. Except
for E =0, the states are doubly degenerate. Therefore, any mixture of such a
pair of states is still an eigenfunction &f. But only two eigenfunctions (for a
given E #0) are also eigenfunctions for the momentum operator. These are the
exponential functions. Since they correspond to different momenta, mixing them
produces functions that are not eigenfunctions for the momentum operator.

9. Motion of a particle on a ring has quantum-mechanical solutions very similar to
those for free-particle motion in one dimension. In both cases, there is no zero-point
energy. Both are doubly degenerate fbor 0 because two directional possibilities
are present. Both have a set of exponential solutions that are eigenfunctions for
momentum. The main difference is that the particle-in-a-ring energies are quan-
tized, due to head-to-tail “joining conditions” af.

10. Increasing the dimensionality of a particle’s range of motion increases the number
of quantum numbers needed to define the wavefunctions. In cases where the
hamiltonian operator can be written as a sum of operators for different coordinates
(i.e., is “separable”), the problem greatly simplifies; the wavefunctions become
products, and the energies become sums.

11. Scattering problems are treated by selecting an energy of interest from the con-
tinuum of possibilities, removing functions that describe nonphysical processes
such as backscatter from the trap, and matching wave values and slopes at region
boundaries. Resulting wavefunctions show wave interference effects similar to
those observed for light.

2-9.A Problems
2-1. Ascertain that the expression (2-12) for energy has the proper dimensions.
2-2. Solve Eq. (2-9) for4.

2-3. There is a simple way to show thdtin Eqg. (2-9) must equal/2/L. It involves
sketchingy 2, recognizing that sifw + cos x = 1, and asking what must equal
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2-5.

2-6.

2-7.

2-8.

2-9.
2-10.

in order to make the area undéf equal 1. Show this fat = 1, and argue why
it must give the same result for al

. Evaluate the probability for finding a particle in the middle third of a one-

dimensional box in states with=1, 2, 3, 10*. Compare your answers with the
sketches in Fig. 2-5 to see if they are reasonable.

a) Estimatethe probability for finding a particle in the =1 state in the line
elementAx centered at the midpoint of a one-dimensional baxif=0.01L.
How does this compare to the classical probability?

b) Repeat the problem, but withx centered one third of the way from a box
edge.

a) Use common sense to evaluate the following integral for the particle in a
one-dimensional box, assuming thais normalized.

L/5
lﬁgdx

b) How does this value compare to that for the integral over the same range, but
usingy instead ofys? (Larger, smaller, or equal?) Use a sketch to defend
your answer.

Let S and A be respectively symmetric and antisymmetric functions for the
operatorR. Evaluate the following, where R operates on every function to its
right: (a) RS (b) RA (c) RSS (d) RAA (e) RAS (f) RAASASSA (g) RAASASAA.
Can you think of a simple general rule for telling when a product of symmetric
and antisymmetric functions will be antisymmetric?

Using the concept of odd and even functions, ascebtainspection of sketches
whether the following need be identically zero:

a) Jo sind cosd do

b) /" sin6 cosd do

c) 1, x cosxdx

d) [“ cosysir?ydy

e) Jo sin®6 cos 6 do

f) Jo sin®6cosodo

9) 1y [2yx2ydxdy

h) /7 xsinx cosxdx

i) fo sinx-L sin’xdx

) J7_sir?x L sinx dx

Verify Eq. (2-23) for the general cage£ m by explicit integration.
For the potential of Fig. 2-8, wheh < U the energies are discrete, and when

E > U, they are continuous. Is there a solution with=U? What special
requirements are there, if any, for such a solution to exist?
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2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

Chapter 2 Quantum Mechanics of Some Simple Systems

Figure P2-12 »

Prove the following statement: any linear combination of degenerate eigenfunc-
tions of H is also an eigenfunction df.

In a few words, indicate what is wrong with the wavefunctions sketched in the
potentials shown in Fig. P2-12. If the solution appears to be acceptable, indicate
this fact.

A double-well potential ranges from=0 to x = 2L and has a thin (width=
0.01L) rectangular barrier of finite height centered at

a) Sketch the wavefunction that goes with the fourth energy level in this system,
assuming that its energy is less than the height of the barrier.
b) Estimatethe energy of this level for a particle of mass

Use the simple approach presented in Problem 2-3 to demonstratd that
1/./7 for the trigonometric particle-in-a-ring eigenfunctions afd/2x for the
exponential eigenfunctions.

-1/2

Explain why (27) exp(i~/2¢) is unacceptable as a wavefunction for the

particle in a ring.

For a particle in a ring, an eigenfunctiomjs= (1/./7) cos3¢).

a) Write downH.

b) EvaluateH v and identify the energy.

c) Is this a state for which angular momentum is a constant of motion? Demon-
strate that your answer is correct.
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2-17.

2-18.

2-19.

2-20.

2-21.

Consider two related systems—a particle in a ring of constant potential and
another just like it except for a very thin, infinitely high barrier insertegd at0.
When this barrier is inserted,

a) are anyenergiesadded or lost?

b) do anydegeneracieshange?

c) are exponential and sine—cosine forms both still acceptable for eigenfunc-
tions?

d) is angular momentum still a constant of motion?

Consider a particle of mags in a two-dimensional box having side lengthg
andL, with L, =2L, and/ =0 in the box 0o outside.

a) Write an expression for the allowed energy levels of this system.

b) What is the zero-point energy?

c) Calculate the energies and degeneracies for the lowest eight energy levels.

d) Sketch the wavefunction for the fourth level.

e) Supposd” =10 J in the box. What effect has this on (i) the eigenvalues?
(ii) the eigenfunctions?

Consider the particle in a three-dimensional rectangular box Witk L, =
L./2. What would be the energy when =1,n,=2,n, =2? Forn, =1,
n,=1,n,=4? Canyou guess the meaning of the term “accidental degeneracy?”

Consider a particle of mags in a cubical box with =0 atO<x, y,z< L.

a) Is (1/«/5) (V511 — ¥335) an eigenfunction for this system? Explain your
reasoning.

b) Estimate the probability for finding the particle in a volume elemekt=
0.001/ at the box center when the systemis in its lowest-energy state. What
is the classical value?

Kuhn [1] has suggested that the mobtileelectrons in polymethine dyes can be
modeled after the one-dimensional box. Consider the symmetric carbocyanine
dyes (1) where the positive charge “resonates” between the two nitrogen atoms.
The zigzag polymethine path along which theslectrons are relatively free to
move extends along the conjugated system between the two nitrogens. Kuhn
assumed a box length equal to this path length plus one extra bond length
on each end (so that the nitrogens would not be at the very edge of the box
where they would be prevented from having amyelectron charge). This
gives L = (2n + 10)/ where! is 1.39 A, the bond length of an intermediate
(i.e., between single and double) C-C bond. The number electrons in the
polymethine region is2+ 10. Assume that each energy level in the box is
capable of holding no more than two electrons and that the electronic transition
responsible for the dye color corresponds to the promotion of an electron from
the highest filled to the lowest empty level, the levels having initially been
filled starting with the lowest, as shown in Fig. P2-13. Calculat€ and A

for the cases =0, 1, 2, 3 and compare with the observed values of maximum
absorption of about 5750, 7150, 8180, and 9250 A, respectively.



64

Chapter 2 Quantum Mechanics of Some Simple Systems

A —
|;_|'r xlx"-. i .-J_H:l.-:l
'-.”‘*-—-'"'{-'r e
£ 4 '-,_
H.C; ™ [ :'(-:_' c} i W . H. -
o HAH HG ”:__L_’-"
H H I
{'-.(-_.-"I;'rl I"-.I'--._ !
AN S
Iy M ¢ ofe E_'}L' AL
T Moaly,

2-22.

2-23.

2-24.

2-25.

Figure P2-13 »

Show whether momentum in theirection is a constant of motion for a free par-
ticle of massn in states described by the following functions. In cases where itis
a constant of motion, give its value. In all cases, evaluate the kinetic energy of the
particle.

a) Yy =sin3x
b) ¥ =exp(3ix)
C) Yy =cos3

d) v =exp(—3ix)

Show whether angular momentum perpendicular to the plane of rotation is a
constant of motion for a particle of magsmoving in a ring of constant potential

in states described by the following functions. In cases where it is a constant of
motion, give its value. In all cases, evaluate the kinetic energy of the particle.

a) ¥ =(1//m)cos3p
b) ¥ = (1/v/27) exp(—3i¢)

) ¥ =(1/J/m)sin3p
d) ¥ = (1/+/27) exp(3i¢)

Demonstrate that the requirement tija= 4 exp(ikt) + B exp(—ikt) havereal
value and slope at a point insuffices to makéd| = |B]|.

Deriverelations (2-73) and (2-74) by matching wave values and slopes at the step.
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2-26. Solve the problem for the step potential shown in Fig. 2-17a, but with the beam
traveling from a source at right toward a trap at left.

2-27. Thereflection coefficient is defined Hﬁ|2/ | 4|2 for abeam originating from the
left of Fig. 2-17a. The transmission coefficient is definedkask) |C|? / | A|2.

a) Why is the factok’/k needed?
b) Show that the sum of these coefficients equals unity, consistent with a
steady-state situation.

2-28. For scattering from a potential such as that in Fig. 2-18a, 100% transmission
occurs at various finite particle energies. Find the lowest two valuds/ of
for which this occurs for particles of maas barrier widthd, and barrier height
U =2h?/7%md?.

2-29. Calculate “frequencies” in cmt needed to accomplish the transitiohg; and
AE> in Fig. 2-14.

Multiple Choice Questions

(Try to answer these by inspection.)

1. The integral/“, co(x) sin(x) dx

a) equals zero for any value af and cogx) is antisymmetric in the range of the
integral.

b) is unequal to zero except for certain valueg ond cogx) is symmetric in the
range of the integral.

c) equals zero for any value @fand cogx) is symmetric in the range of the integral.

d) is unequal to zero except for certain values pnd sir{x) is antisymmetric in
the range of the integral.

e) equals zero for any value@fand sir{x) is symmetric in the range of the integral.

2. [Z" xsin(x) cos(x) dx

Which one of the following statements is true about the above integral and the three
functions in its integrand?

a) All three functions are antisymmetric in the range and the integral equals zero.

b) Two functions are antisymmetric and one is symmmetric in the range, and the
integral is unequal to zero.

c) Two functions are symmetric and one is antisymmetric in the range, and the
integral is equal to zero.

d) One function is symmetric, one is antisymmetric, and one is unsymmetric in the
range, and the integral is unequal to zero.

e) None of the above is a true statement.
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3. In solving the particle in a one-dimensional box problem with infinite repulsive
walls atx =0 andL, we started with the functiod sin(kx) + B cogkx). Which
one of the following is a true statement?

a) The value of is found by requiring that the solution be normalized.

b) AddingC exp(ikx) to the above function would prevent it from being an eigen-
function of the hamiltonian operator.

c) Itis necessary that this function equalvhenx = 0.

d) The boundary condition at= L is used to show thag =0.

e) None of the above is a true statement.

4. Itis found that a particle in a one-dimensional box of lenftban be excited from
thern =1 to then = 2 state by light of frequency. If the box length is doubled, the
frequency needed to produce the- 1 ton = 2 transition becomes

a) v/4

b) v/2

c) 2v

d) 4v

e) None of the above is correct.

5. For a particle in a one-dimensional box with infinite wallsat 0 andLZ, and in the
n = 3 state, the probability for finding the particle in the range < L/4 is

a) greater than/B.

b) exactly 1/6.

c) exactly ¥3.

d) less than 16.

e) None of the above is correct.

6. A student calculates the probability for finding a particle in the left-most 10% of a
one-dimensional box for the= 1 state. Which one of the following answers could
be correct?

a) 1742
b) 0.024
c) 0.243
d) 0.100
e) None of the above is reasonable.

7. Which one of the following statements is true about the particle in a one-dimensional
box with infinite walls? (All integrals range over the full length of the box.)

a) [ Ws? dx = 0 because these wavefunctions are orthogonal.

b) [ ¥1¥3dx =0 because both of these wavefunctions are symmetric.
C) f Y1yro dx = 0 because these wavefunctions are normalized.

d) [ v¥1¢3dx =0 because these wavefunctions are orthogonal.

e) None of the above is a true statement.
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8. Which one of the following is the correct formula for the lowest-energy eigenfunc-

tion for a particle in a one-dimensional box having infinite barriers at—L /2
andL/2?

a) \/%sin(nx/L)
b) \/%cos(nx/L)
C) \/%exp(inx/L)

d) /2 exp(—imx/L)
e) None of the above is correct.

9. A particle is free to move in the dimension without constraint (i.e., under the

10.

11.

influence of a constant potential, which we assume to be zero). For this system,
the wavefunction) (x) = exp(3.4x) is not acceptable because

a) itis not an eigenfunction of the hamiltonian operator.
b) itis multi-valued.

¢) itis discontinuous.

d) it approaches infinity as approaches infinity.

e) it goes to zero as approaches minus infinity.

Consider two identical one-dimensional square wells connectedflytabar-

rier. Which one of the following statements about the quantum-mechanical time-
independent solutions for this system is true when two equivalent “half-solutions”
in the two wells are joined together to produce two overall solutions?

a) The combination that is symmetric for reflection through the central barrier
always has the lower energy of the two.

b) The combination that places a node in the barrier always has the lower energy
of the two.

¢) The sum of the two half-solutions always has the lower energy of the two.

d) The difference of the two half-solutions always has the lower energy of the two.

e) None of the above is a true statement.

For a single particle-in-a-ring system having enerfj§/87 21 we can say that the
angular momentum, when measured, will equal

a) #

b) /12

c) either 3 or —3#

d) zero

e) None of the above is a true statement.

12. A particle in a ring has wavefunctions that

a) result from placing an integral number of half-waves in the circumference of
the ring.

b) must be eigenfunctions fek /2i)d /d¢.

c¢) are all doubly degenerate, due to two rotational directions.
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13.

14.

15.

Chapter 2 Quantum Mechanics of Some Simple Systems

d) correspond to energies that increase with the square of the quantum number.
e) None of the above is a true statement.

The hamiltonian operator for a system is
H=—(h?/81°m)V? +x°+ y? + 22
For this system we should expect

a) two quantum numbers at most.

b) eigenfunctions that are sums of functions, each depending on only one of the
variables.

c) eigenvalues that are products of eigenvalues of separated equations.

d) eigenvalues that are sums of eigenvalues of separated equations.

e) None of the above is a correct statement.

For a particle in a one-dimensional box with one infinite barrier and one finite
barrier of height U,

a) ¢ =0 at both barriers if E is less than U.

b) barrier penetration is smallest for the lowest-energy state.

¢) no more than one quantized state can exist, and its energy is less than U.
d) only states having E greater than U can exist.

e) None of the above statements is correct.

For a particle of mas& in a cubical box having edge length

a) the zero point energy i5:3/8m L2.

b) the probability density has its maximum value at the box centepief.
¢) the degeneracy of the ground state is 3.

d) 111 has three nodal planes.

e) None of the above is a true statement.
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Chapter 3

The One-Dimensional Harmonic
Oscillator

D 3-1 Introduction

In Chapter 2 we examined several systems with discontinuous potential energies. In this
chapter we consider the simple harmonic oscillator—a system with a continuously vary-
ing potential. There are several reasons for studying this problem in detail. First, the
guantum-mechanical harmonic oscillator plays an essential role in our understanding
of molecular vibrations, their spectra, and their influence on thermodynamic properties.
Second, the qualitative results of the problem exemplify the concepts we have presented
in Chapters 1 and 2. Finally, the problem provides a good demonstration of mathemat-
ical techniques that are important in quantum chemistry. Since many chemists are not
overly familiar with some of these mathematical concepts, we shall deal with them in
detail in the context of this problem.

D 3-2 Some Characteristics of the Classical
One-Dimensional Harmonic Oscillator

A pendulum consisting of a large mass hanging by an almost weightless wire, and
swinging through a very small angle, is a close approximation to a classical harmonic
oscillator. It is an oscillator since its motion is back and forth over the same path.
It is harmonic to the extent that the restoring force on the mass is proportional to the
horizontal component of the displacement of the mass from its rest position. This force
law, known agHooke's law is the common first approximation made in the analysis of

a system vibrating about an equilibrium position. If we let.thexis be the coordinate

of displacement of the mass, with= 0 as the rest position, then we may write the
restoring force as

F=—kx, (3-1)

wherefk is theforce constant The minus sign assures that the force on the displaced
mass is always directed toward the rest position.

We can use this force expression to determine@umation of motiorior the mass,
that is, an equation relating its location in spaceo its location in time¢:

d?x (1)
dt?

F=—kx(t)=ma=m (3-2)

69
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or
d?x (1)
dt?

According to this equation;(¢) is a function that, when differentiated twice, is regen-
erated with the multiplier%/m. A general solution is

x(¢)=asin (&t> +bcos<\/§ t) (3-4)

If we require thatx(¢) be at its maximum valué at¢ =0 (as though the pendulum
is held at its position of maximum displacement and then releasee- &), then it
follows thatb = L. Since the pendulum is also motionless &t0, (dx(¢)/dt);—0 =0,

and saz =0. Hence,
k
x(t)=1L cos(, [ — t) (3-5)
m

Thus, the equation of motion [Eg. (3-3)] leads to a functio), that describes the
trajectory of the oscillator. This function has the trigonometric time dependence char-
acteristic ofharmonicmotion. From this expression, we see thét) repeats itself
whenever the argument of the cosine increaseshyThis will require a certain time
interval?’. Thus, the pendulum makes one complete back and forth motion in @'time

given by
N R (3-6)
m k

so thefrequencyof the oscillationv is

= (—k/m)x (1) (3-3)

v=1/t'= 1k (3-7)
2\ m

Suppose that one were to take a multiflash photograph of a swinging pendulum from
above. The result would look as shown in Fig. 3-1a, the number of images being much
greater near the termini of the swing (called the “turning points”) than at the middle
because the pendulum is moving fastest as it crosses the middle. This, in turn, results
from the fact that all the potential energy of the mass has been converted to kinetic
energy at the middle point. We thus arrive at a classical prediction for the time-averaged
distribution of the projection of the harmonic oscillator in the displacement coordinate:
This distribution functionis greatest in regions where the potential energy is highest
(Fig. 3-1b) (Problem 3-1).

Let us calculate and compare the time-averaged potential and kinetic energies for the
classical harmonic oscillator. When the particle is at some instantaneous displacement
x', its potential energy is

V (x") = (applied force times distance to returmte= 0)

’

* 1 2
= A kxdx:Ekx (3-8)
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ErmE = = L] - L] L - - + [ L] h " smmd

1l

Figure 3-1 » (@) Results of a uniform multiflash photograph of a swinging pendulum as pho-
tographed from above. (b) Distribution function corresponding to the continuous limit of discrete
distribution shown in (a).

The cumulative value of the potential energy over one complete oscilldfiois, given
by the integral

t t
Ve (t' —0) :f V(t) dt = %k/ x ()% dt (3-9)
0 0

Substituting forx (¢) as indicated in Eq. (3-5)
’ _ 1‘ 2/[/ \/E
Ve('=0) = SkL A cog — 1) dr
1, ‘ \/7 \/7
= SkL w/m/k/O c052< Et)d( —t (3-10)

Whent =+, /k/mt =27, and we may rewrite Eq. (3-10) as

1 2
Ve(t' —0)= ékLZ,/m/k/ coS ydy=(n/2) kL?\/m/k (3-11)
0
If we now divide by:’ to get the average potential energy per unit time, we find

Ve(t' =0) _ (w/2kL2/m[E _kL?
v ongm/k 4

Thus, we have the average potential energy. If we knew the total energy, which is a
constant of motion, we could get the average kinetic energy by taking the difference.

V= (3-12)




72 Chapter 3 The One-Dimensional Harmonic Oscillator

It is easy to evaluate the total energy by taking advantage of its constancy over time.
Since we can choose any point in time to evaluate it, we select the moment of release
(t =0 andx = L). The mass is motionless so that the total energy is identical to the
potential energy:

1
E= EkLZ (3-13)
Comparing Egs. (3-12) and (3-13) we see that kL2/4. On the average, then, the
classical harmonic oscillator stores half of its total energy as potential energy and half
as kinetic energy.

EXAMPLE 3-1 A 10.00g mass on a Hooke's law spring with force constaat
0.0246 N nT 1 is pulled from rest at =0 tox = 0.400 m and released.

a) What is its total energy?

b) What is its frequency of oscillation?

c) How do these answers change if the mass weigtG04f»

SOLUTION » @)E=T+V. Atx=0400m7=0,E=V :kx2/2: 0.50(0.0246 N nT 1)

(0.400 M2 = 0.0020J
1/2

1\1/2
) v=gk (£)"" = 2 (SB) =025 51
c) E is unchanged, andis halved to 0125 sl The energy depends on the force constant and
the displacement of the oscillator, but not on the mass of the oscillator. The frequency depends not
only on the force constant, but also on the mass because the frequency is affectethéstithef
the oscillator. A greater mass has a lower frequency of oscillation for the same force corstant.

D 3-3 The Quantum-Mechanical Harmonic Oscillator

We have already seen [Eq. (3-8)] that the potential energy of a harmonic oscillator is
given by

Vx) = %kx2 (3-14)

so we can immediately write down the one-dimensional &dihger equation for the
harmonic oscillator:

[(—h2/87r2m)(d2/dx2) + %kx2:| V(x) = EY(x) (3-15)

The detailed solution of this differential equation is taken up in the next section.
Here we show that we can understand a great deal about the nature of the solutions to
this equation by analogy with the systems studied in Chapter 2.

In Fig. 3-2a are shown the potential, some eigenvalues, and some eigenfunctions for
the harmonic oscillator. The potential function is a parabola [Eq. (3-14)] centered at
x =0and having a value of zero at its lowest point. For comparison, similar information
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Figure 3-2 » The potential function, energy levels, and wavefunctions for (a) the harmonic oscil-

lator, (b) the particle in the infinitely deep square well. ¥ for the harmonic oscillator in the state
n=>5.

is graphed in Fig. 3-2b for the particle in a box with infinitely high walls. Some
important features of the harmonic oscillator are:

1. The energy-level spacing for the harmonic oscillator is constakd mentioned
in Chapter 2, we expect the energy levels for the harmonic oscillator to diverge
less rapidly than those for the square well because the higher energy states in the
harmonic oscillator have effectively larger “boxes” than do the lower states (that is,
the more energetic the oscillator, the more widely separated are its classical turning
points). That the spacing for the oscillator grows less rapidly than that for the box
is therefore reasonable. That it is actuadlynstantis something we will show
mathematically in the next section.

2. The wavefunctions for the harmonic oscillator are either symmetric or antisymmetric
under reflection througl =0. Thisis necessary because the hamiltonianis invariant
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to reflection through = 0 and because the eigenfunctions are nondegenerate. Both

of these conditions apply also to the box problem. If we imagine moving from the
box potential to the parabolic potential by a process of continuous deformation, the
symmetry is not altered and there is no reason to expect nondegenerate box levels
to come together and become degenerate. Therefore, the oscillator wavefunction
symmetries are not surprising. As a consequence, we have at once that the symmetric
wavefunctions are automatically orthogonal to antisymmetric wavefunctions, as
discussed earlier. (Actually, all the wavefunctions are orthogonal to each other. This
is proved in Section 3-4.)

3. The harmonic oscillator has finite zero-point energ§The evidence for this in
Fig. 3-2a is the observation that the line for the lowest(0) energy level lies
above the lowest point of the parabola, whére-0.) This is expected since the
change from square well to parabolic well does notremove the restrictions on particle
position; it merely changes them.

4. The particle has a finite probability of being found beyond the classical turning
points; it penetrates the barrier This is to be expected on the basis of earlier
considerations since the barrier is not infinite at the classical turning point. (The
potential becomes infinite only at=+00.)

5. In the lowest-energy state the probability distribution favors the particle being in
the low-potential central region of the well, while at higher energies the distribution
approaches more nearly the classical result of favoring the higher potential regions
(Fig. 3-2c)

D 3-4 Solution of the Harmonic Oscillator

Schrodinger Equation
3-4.A Simplifying the Schr™ odinger Equation
Equation (3-15) is simplified by substituting in the following relations:
o =87°mE/h? (3-16)
B? = 4w ’mk/ h? (3-17)

The quantitiesr and 8 have units of m2. We will assume thag is the positive root
of 2. The quantityx is necessarily positive. The Sdtinger equation now can be
written

2
% +(a— B33 Yy (x)=0 (3-18)

3-4.B Establishing the Correct Asymptotic Behavior

At very large values ofx|, the quantitye (which is a constant sinc& is a con-
stant) becomes negligible comparegsto®. That is, the Schudinger equation (3-18)
approaches more and more closely the asymptotic form

d*y(x)/dx? = B2x2P (x), |x|— o0 (3-19)
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What we need, then, are solutiofigx) that approach the solutions of Eq. (3-19) at
large values ofx|. The solutions for Eq. (3-19) can be figured out from the general
rule for differentiating exponentials:

(d/dx)exp(u(x)) =exp(u(x))du(x)/dx (3-20)
Then
(d?/dx®) expu(x)) = [(du(x)/dx)? + d%u(x) /dx?] explu(x)) (3-21)

We want the term in square brackets to become equzd+8 in the limit of large|x|.
We can arrange for this to happen by setting

u(x) =+px?/2 (3-22)
for then
(d?/dx?) expu(x)) = (B%x? + B) exp(+px2/2) (3-23)

At large values ofx|, g is negligible compared t@2x?, and so exptpx?/2) are
asymptotic solutionfor Eq. (3-19). Adx| increases, the positive exponential increases
rapidly whereas the negative exponential dies away. We have seen that, for the wave-
function to be physically meaningful, we must reject the solution that blows up at large
|x|. On the basis of these considerations, we can say thatzéntains exp—px2/2),

it will have the correct asymptotic behavidmo other term is present that dominates

at large |x|. Therefore,

¥ (x) = q(x) exp(—Bx?/2) (3-24)

and it remains to find the functigp(x).

3-4.C The Differential Equation for  q(x)
Substituting Eq. (3-24) into the Sadihger equation (3-18) gives

d d?
exp(—Bx2/2) | —Bq (x) — 2Bx q(r) + q—(zx) +ag(x)|=0 (3-25)
dx dx
This equation is satisfied only if the term in brackets is zero:
d? d
"(,f) —2px %Y | pyq () =0 (3-26)
dx dx

Thus, we now have a differential equation fa).
At this point it is convenient to transform variables to put the equation into a simpler
form. Let

y=+/Bx (3-27)
Then
djdy=d/d (/Ex) — (1/\/3) d/dx (3-28)
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so that
d/dx =/Bd/dy (3-29)
Similarly
d?  Bd?
2= 02 (3-30)
and
Y
= 3-31
x="5 (3-31)
Substituting Egs. (3-29)—(3-31) into (3-26), and definifig)) as
f»=7(VBx)=qx) (3-32)

we obtain (after dividing bys)

d? d
;;;y) —2y J;(yy) +[(@/B) -1 f(»=0 (3-33)

3-4.D Representing f as a Power Series

Now f(y) is some function ofy that must be single valued, continuous, and smooth
(i.e., have a continuous first derivative) yifis to be properly behaved. Can we think

of any functions that satisfy these properties? Of course, we can think of a limitless
number of them. For example, i, 2, 33, y*, etc., are all single valued, continuous,
and have continuous derivatives, and sois any linear combination of such functions (e.g.,
4y3 — y+ 3). Other examples are sin) and exgy). These functions can be expressed

as infinite sums of powers of, however, and so they are included, in principle, in the
first example. Thus

sin(y) =y — y3/31+1°/51 — y /71 + - .. (3-34)
and
exp(y) = Z V' /n! (3-35)
n=0

thatis, sir{y) and the set of all positive powers parelinearly dependentBecause the
powers ofy can be combined linearly to reproduce certain other functions, the powers
of y are called &omplete sedf functions. However, we must exercise some care with
the concept of completeness. The positive powers cdnnot be used to reproduce a
discontinuous function, or a function with discontinuous derivatives. Hence, there are
certain restrictions on the nature of functigf(g), that satisfy the relation

o0

g =Y cn) (3-36)
n=0
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These restrictions define a class of functions, angptheers of y are a complete set

only within this class The positive powers of, then, form a complete set, but if we
remove one of the members of the set, say 1 (the zero powgr, tien the set is no
longer complete. This means that the remaining members of the set cannot compensate
for the role played by the missing member. In other words, the missing member cannot
be expressed as a linear combination of the remaining members. In this example

1#£ ey (3-37)
n=1

This is easily demonstrated to be true since the left-hand side of Eq. (3-37) is unity
whereas the right-hand side must be zero whenO for any choice of coefficients.
Thus, the powers of arelinearly independentunctions (no one of them can be
expressed as a linear combination of all the others).

The function f(y) involved inyr should be a member of the class of functions for
which the powers of form a complete set. Therefore, we may write

o0

=Y e (3-38)

n=0

and seek an expression for the unknown multipligrs

3-4.E Establishing a Recursion Relation for  f

Notice that if

f) =co+c1y+cay® +eay® +eayt+ - (3-39)
then

df (»)/dy=c1+ 2cy+ 3c3y® +4cay> + - - (3-40)
and

d? f(y)/dy? =2co+2-3c3y+3-4cay* + - - (3-41)

Thus, substituting Eq. (3-38) into (3-33) gives

1-2c0+2-3cay+3-4cay®+ -+ — 201y — 2202y —2-3c3y> — - -

+[(a/B) = Ueo+[(a/B) — Lery+[(@/B) — Ucay? +---
=0 (3-42)

Now we will take advantage of the fact that the various powers fifrm a linearly
independent set. Equation (3-42) states that the expression on the LHS equals zero
for all values ofy. There are two ways this might happen. One of these is that minus
the constant part of the expression is always exactly equal te-ttependent part, no
matter what the value of. This would require a relationship like Eq. (3-37) (except
with an equality), which we have seen is not possible for independent functions. The
remaining possibility is that the various independent parts of Eq. (3-42) are individually
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equal to zero—the constant is zero, the coefficientf@s zero, etc. This gives us a
whole set of equations. Setting the constant term equal to zero gives

2c2+[(a/B) —1lco=0--- m=0 (3-43)
Setting the coefficient for the first power oto zero gives
2-3c3—2c1+[(@/B) —1e1=0--- m=1 (3-44)
The y? term gives
3-4cs—2-2c5+[(a/B) —Llco=0--- m=2 (3-45)

By inspecting this series, we can arrive at the general result

(m~+1)(m+2)cpi2+[(e/B) —1—2m]cy =0 (3-46)
or
 —l@/p)—2m -1 _
Cm+2= (m T 1) (m T 2) Cm (3 47)

Equation (3-47) is called eecursion relation If we knew cg, we could produce
c2, ¢4, cg, €tc., by continued application of Eq. (3-47). Similarly, knowledgeof
would lead tocs, cs, etc. Thus, it appears that the coefficients for even powess of
and those for odd powers gf form separate sets. Choosiagdetermines one set,
and choosingi determines the other, and the choicesdpandc; seem independent.
This separation into two sets is reasonable when we recall that our final solutions
must be symmetric or antisymmetric.in hence also iry. The asymptotic part of,
exp(—Bx?/2), is symmetric about = 0, and so we expect the remaindegqff (), to
be either symmetric (even powerspf= ./Bx) or antisymmetric (odd powers). Thus,
we can anticipate that some of our solutions will haye: 0, c2 #0,c4 #0, ... and
c1=c3=c5="---=0. This will produce symmetric solutions. The remaining solutions
willhaveco=co=cq4=---=0andec1 #0,c3#0, ..., and be antisymmetric.

EXAMPLE 3-2 Evaluatecs andcs if ¢4 =1, for arbitraryee andg. What ratioo /8
will make c3 =0? What ratiax/g8 will make c¢5 =0 butcz # 0?

SOLUTION » ¢1=1, Forcs, weusen =1, c3= ‘[“(/2/3)(‘3?‘1] x 1= 32/
Fores we usen =3, o5 = —9/f=6-11 , [3=a/f] _ (T-a/p)(3-a/p)

®
a/B =3 makes3z =0 (and also:53. a/B =7 makess =0, but notcs. <

3-4.F Preventing f(y) from Dominating the Asymptotic Behavior

We now examine the asymptotic behavior fy). Recall that, at very large values
of |y|, f(») must become insignificant compared to expx2/2) = exp(—)?/2). We

will show that /() fails to have this behavior if its power series expression is infinitely
long. That is, we will show thaif(y) behaves asymptotically like exgd), which
dominates exp-12/2).
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We know that the series expression for &x) is

4 6 +2
2y _ A V' V'
exp(y?)=1+y +E+§+'”+(n/2)!+(n/2+1)!+"' (3-48)

The series forf(y) has terms
e+ Cnr2d TP cugay T (3-49)

The ratio between coefficients for two adjacent terms high up in the series #efigre
exp(y?) is, from Eq. (3-48)

coeff for y* 12 (/2 1 largen g (3-50)
coefffory’  [(n/2)+1]! (n/2)+1 n
and for f(y) itis, from Eqgs. (3-49) and (3-47),
coefffory’*> c,42  —(@/B)+1+2n largen 2 (3.51)
coefffory’ ¢, = n24+3n+2 n

This means that, at large valueggfvhen the higher-order terms in the series dominate,
/() behaves like exp?). Then

lim v ()= lim_ /() exp—y?/2) =exp(%/2) — oo (3-52)

The asymptotic behavior af is ruined. We can overcome this problem by requiring
the series forf(y) to terminate at some finite power. In other worg%,) must be

a polynomial. This condition is automatically fulfilled if any one of the coefficients

in a given series (odd or even) is zero since Eq. (3-47) guarantees that all the higher
coefficients in that series will then vanish. Therefore, we require that some coefficient
vanish:

cny2=0 (3-53)
Assuming that this is the lowest zero coefficient (icg .+ 0), Eq. (3-47) gives
(@/B)—2n—1=0 (3-54)
or

a=p2n+1) (3-55)

3-4.G The Nature of the Energy Spectrum

Now we have a recipe for producing acceptable solutions for theo8ttgér equation

for the harmonic oscillator. If we desire a symmetric solution, weset0 andcg =1.

If we want the polynomial to terminate af, we require thatx andg be related as in

Eq. (3-55). In this way we can generate an unlimited number of symmetric solutions,
one for each even value afthat can be chosen for the terminal value. Similarly, an
unlimited set of antisymmetric solutions results from settigg=0 andc; =1 and
allowing the highest contributing value efto take on various odd integer values.
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(Solved Problem 3-2 provides an example by showing ¢hdtecomes the first odd-
power-coefficient equal to zerodf/8 =7.)

Since we now know that an acceptable solution satisfies Eq. (3-55), we can exam-
ine the energy spectrum. Substituting into Eq. (3-55) the expressions &od 8
[Egs. (3-16) and (3-17)], we obtain

87°mE/h? = 2n~mk/h)(2n + 1) (3-56)

or
E=h(n+%> (%)\/lc/_mz(n—f—%)hv (3-57)

where the classical definition of[Eq. (3-7)] has been used.
This result shows that, wheneveincreases by unity, the energy increases yso
the energy levels are evenly spaced as shown in Fig. 3-2. At absolute zero, the system
will lose its energy to its surroundings insofar as possible. However, siadgin the
lowest permissible state for the system, there will remain a zero-point ene%y)of

3-4.H Nature of the Wavefunctions

The lowest energy solution corresponds:te- 0. This means thatp is the highest
nonzero coefficient in the power series expansioryfor). Hence, we must sep = 0.
(The odd-powered series coefficients are all zero for this case.) Thus=f0r we can
write the unnormalized wavefunction as [from Eq. (3-24)]

Yo = coexp(—y%/2) = coexp(—px?/2) (3-58)

This is just a constant times a Gauss error function or simple “gaussian-type” function.
This wavefunction is sketched in Fig. 3-2 and is obviously symmetric.

The next solution has=1, ¢1 #0 butcz3=c5=---=0. (The even-powered series
coefficients are all zero for this case.) The unnormalized wavefunctionsdr is then
Y1(y) = cLyexp(—)7%/2) (3-59)

The exponential is symmetric andis antisymmetric, and so their produgt(y), is
antisymmetric (Fig. 3-2).

To gety2 we need to use the recursion relation (3-47). We know that odd-index
coefficients are all zero and that ondy and ¢, of the even-index coefficients are
nonzero. Assumingg = 1, we have (using (Eq. 3-47) with =0)

—[(@/p)—2-0—-1] (a/B)—1
cr= 1=—
D@ 2

But the ratiox/8 is determined by the requirement tlagt= 0. Referring to Eq. (3-55),
this gives (fom =2) «/8 =5, and so

(3-60)

cp=—4/2=-2 (3-61)
and the unnormalized wavefunction is

Y2(y) = (1—2)%) exp(—y?/2) (3-62)
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Polynomials like (1~ 2)2), which are solutions to the differential equation (3-33),
are known as Hermite (h@nee} polynomials, H,(y). In addition to the recursion
relation (3-47), which we have derived, other definitions are known. One of these
involves successive differentiation:

d" exp(—y%)
dy"
Thus, if we wantH>(y), we just sez =2 in Eq. (3-63) and evaluate that expression to

get

H,(») = (=1)" exp()?) (3-63)

Hy(y) =472 (3-64)

which differs from our earlier result by a factor eR. Yet another means of producing
Hermite polynomials is by using the generating function

o0

G(y,u)=expy’ — (u— 1= (Hy(y)/n)u" (3-65)
n=0

We use this expression as follows:

1. Expressthe exponential interms of its power series, writing down a few of the leading
terms. There will exist, then, various powersoénd y and factorial coefficients.

2. Collect together all the terms containing.

3. The coefficient for this term will be equal #2(y)/2.

This is a fairly clumsy procedure for producing polynomials, but Eqg. (3-65) is
useful in determining general mathematical properties of these polynomials. For
instance, Eq. (3-65) will be used in showing that the harmonic oscillator wavefunctions
are orthogonal.

3-4.1 Orthogonality and Normalization

We will now show that the harmonic oscillator wavefunctions are orthogonal, i.e., that

+00 +00
YDV () dy= Hy(») Hy (y) €Xp(—y?)dy=0--- n#m (3-66)

—0o0 —0o0

Consider the integral involving two generating functions and the exponentjél of

+00
/ G (v, 1)G (. v) eXp—P)dy

_ ZZ /+OO H, (y)Hm ) exp(—y (3-67)

Cnm

where we label the integra),,, for convenience. The left-hand side of Eq. (3-67) may
also be written as [using Eq. (3-65)]

+o00 +o00
/ expf—(y—u— v)?] exp2uv)dy = exp(2uv) / expf—(y—u— v)z]dy
- - (3-68)
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However, we can add constants to the differential element without affecting the integral
value, and: andv are constants when onlyvaries. Therefore, (3-68) becomes (see
Appendix 1 for a table of useful integrals)

+00
exp(2uv)/ expg—(y—u— v)z]d(y —u —v) =expl2uv)/T

= V{14 2uv + 4uPv? /21 + 8uv3 /3 + - + 2" nl + -} (3-69)

This expression is equal to the right-hand side of Eq. (3-67). Comparing Eq. (3-67)
with (3-69), we see that 1 = 2,/7 since the terra'v1 is multiplied by 2r in Eq. (3-69)

and byc11 in Eq. (3-67). Similarlyeo, =4./7 /2! Butci2=0. Hence, we arrive at the
result

+00
Cnm :/ Mexp(_yz) dyzﬁ(zn/n') 6n,m (3_70)

—c0 nlm!

(8,.m is the “Kronecker” delta. It is a discontinuous function having a value of unity
whenn =m but zero whem #m.) So

+00
Y (V) Ym (¥) dy= \/Em!znfsn,m (3'71)

This proves the wavefunctions to be orthogonal and also provides us with a normalizing
factor. Normality refers to integration in rather than ino= ./Bx, so we must change
the differential element in Eq. (3-71):

+00

—+00
V2 dy=/B / V2 () dx = /rn12" (3-72)

Requiring thatff;f w2 (y) dx =1 leads to the expression for the normalized wave-
functions:

12
/ 1
Y (¥) = ( é " ) Hy (y) eXp(—yz/Z) ) n=012,... (3-73)
7w 2'n!

The first members of the set of Hermite polynomials are

Ho(y) =1, Hi(y)=2y, Ha(y)=4y"—2, Ha(y)=8y>—12y
Hy(y) = 16y* — 482 +12,  Hs(y) =32)° — 160y° + 120y (3-74)
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3-4.J Summary of Solution of Harmonic-Oscillator
Schrodinger Equation

The detailed solution is so long that the reader may have lost the broad outline.
The basic steps were:

1. Determine the asymptotic behavior of the Smtinger equation and af. This
produces a gaussian factor €xp/2) times a function ofy, 1(y).

2. Obtain a differential equation for the rest of the wavefunctif¢y).

3. Represenf(y) as apower series iy) and find arecursion relation for the coefficients
in the series. The symmetries of the wavefunctions are linked to the symmetries of
the series.

4. Force the power series to be finite (i.e., polynomials) so as not to spoil the asymptotic
behavior of the wavefunctions. This leads to a relation betwesadg that produces
uniformly spaced, quantized energy levels.

5. Recognize the polynomials as being Hermite polynomials, and utilize some of the
known properties of these functions to establish orthogonality and normalization
constants for the wavefunctions.

EXAMPLE 3-3 Which of the following expressions are, by inspection, unaccepteLbIe
eigenfunctions for the Scbdinger equation for the one-dimensional harmonic
oscillator?

a) (64y% — 480y* 4 720y% — 120 exp(y?/2)
b) (64y°® —480y° + 7203 — 120) exp(—?/2)
c) (64y% —480y* 4 72012 — 120 exp(—?/2)

SOLUTION » a) is unacceptable because €xy2) blows up at largey|.
b) is unacceptable because the polynomial contains terms of both even and odd powers.
C) is acceptable. <

D 3-5 Quantum-Mechanical Average Value of

the Potential Energy

We showed in Section 3-2 that the classical harmonic oscillator stores, on the average,
half of its energy as kinetic energy, and half as potential. We now make the analogous
comparison in the quantum-mechanical system for the grouad)) state.

The wavefunction is

Yo(x) = (B/m)* exp(—px?/2) (3-75)

and the probability distribution of the particle along theoordinate is given bwg(x).
The total energy is constant and equal to

Eozghv=(h/4n)\/k/m (3-76)
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and the potential energy as a functiorxab
1 2
Vix)= Ekx (3-77)
The probability for finding the oscillating particle in the line eleméntaround some
pointx1 is wg(xl) dx, sinceyg of Eq. (3-75) is normalized. Hence, the average value

for the potential energy is simply the sum of all the potential energies due to all the
elementsix, each weighted by the probability for finding the particle there:

o0 +00
v :/ [prob. to be indx][V atdx]dx = YE(xX)V (x)dx (3-78)
Thisis
vV =p/m)? }k/%o exp(—px?)x%dx =/B/m - 1. },/ﬂ/ﬁ3 (3-79)
2" ) o 2" 2

where we have referred to Appendix 1 to evaluate the integral. Using the definition of
B2 (Eq. 3-17) we have

V =k/4B = (k/8) - h]2r~mk) = (h/87)\/k/m (3-80)

which is just one half of the total energy [Eq. (3-76)]. This means that the average
value of the kinetic energy must also equal half of the total energy, $ined” = E.

We thus arrive at the important result that the ratio of average potential and kinetic
energies is the same in the classical harmonic oscillator and the ground state of the
guantum-mechanical system. This result is also true for the higher states. For other
kinds of potential, the storage need not be half and half, but whatever itis, it will be the
same for the classical and quantum-mechanical treatments of the system. We discuss
this point in more detail later when we examine the virial theorem (Chapter 11 and
Appendix 8).

D 3-6 Vibrations of Diatomic Molecules

Two atoms bonded together vibrate back and forth along the internuclear axis. The
standard first approximation is to treat the system as two nuclear masgsasdm
oscillating harmonically with respect to the center of mass. The force conisiant
determined by the “tightness” of the bond, with stronger bonds usually having larger
The two-mass problem can be transformed to motion ofedecedmassu, vibrat-
ing harmonically with respect to the center of magsis equal tomimz/(m1+ m2).
The force constant for the vibration of the reduced mass remains identical to the force
constant for the two masses, and the distance of the reduced mass from the center
of mass remains identical to the distance betwaerandm,. Thus we have a very
convenient simplification: We can use the harmonic oscillator solutions for a single
oscillating masg as solutions for the two-mass problem. All of the wavefunctions and
energy formulas are just what we have already seen except teaeplaced by.. The
practical consequence of this is that we can use the spectroscopically measured energy
spacings between molecular vibrational levels to obtain the validafa molecule.
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EXAMPLE 3-4 There is a strong absorption in the infrared spectrum 9XHat
2992 cntl, which corresponds to an energy 0981 x 10-22 J. This light energy,
E, is absorbed in order to excite HCI from the= 0 to then = 1 vibrational state.
What is the value of, the force constant, in HCI?

SOLUTION » The vibrational spacingv must be equal to.841x 107203, We know that,
sinceu replacesn, v = (1/27)/k/it, which means that = 472E2;,/ h2. The formula foru
is mymcy/(My + mgy) = 1.614x 10727 kg. It follows thatk is equal to 42(5.941 x 10-203)2
(1.614x 1027kg)/(6.626 x 1034392 =512N m 1. <

D 3-7 Summary

In this chapter we have discussed the following points:

1.

The energies for the quantum-mechanical harmonic oscillator are given by the for-
mula E, = (n +1/2)hv, n=0,1,2,..., wherev = (1/2r)/k/m. This gives
nondegenerate energy levels separated by equal inteiadlsafd a zero-point
energy ofhv/2.

. The wavefunctions for this system are symmetric or antisymmetric for reflection

throughx =0. This symmetry alternates asncreases and is related to the presence
of even or odd powers of in the Hermite polynomial inj.

. Each wavefunction is orthogonal to all of the others, even in cases where the sym-

metries are the same.

. The harmonic oscillator wavefunctions differ from particle-in-a-box wavefunctions

in two important ways: They penetrate past the classical turning points (i.e., past
the values ok whereE =7"), and they have larger distances available to them as a
result of the opening out of the parabolic potential function at higher energies. This
gives them more room in which to accomplish their increasing number of wiggles
asn increases, and so the energy does not rise as quickly as it otherwise would.

. The manner in which the total energy is partitioned into average potential and kinetic

parts is the same for classical and quantum-mechanical harmonic oscillators, namely,
half and half.

. Vibrations in molecules are usually approximately harmonic. Mass is replaced by

reduced mass in the energy formula. Measuring the energy needed to excite a
molecular vibration allows one to calculate the harmonic force constant for that
particular vibrational mode.

3-7.A Problems

3-1. From the equation of motion (3-5) show that the classical distribution function is

proportional to (- x2/L2)~Y/2,
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3-2.

3-3.

3-4.

3-5.

3-7.

3-8.

3-9.

3-10.

Chapter 3 The One-Dimensional Harmonic Oscillator

A classical harmonic oscillator with mass ab0 kg and operating with a force
constant of 00 kg s2 =2.00 J m2 is released from rest at=0 andx =
0.100 m.

a) What is the function (¢) describing the trajectory of the oscillator?
b) Where is the oscillating mass wheg 3 seconds?

¢) What is the total energy of the oscillator?

d) What is the potential energy whee- 3 seconds?

e) What is theime-averagegotential energy?

f) What is the time-averaged kinetic energy?

g) How fast is the oscillator moving whenr= 3 seconds?

h) Where are the turning points for the oscillator?

i) What is the frequency of the oscillator?

Find the expression for the classical turning points for a one-dimensional har-
monic oscillator in terms of, m, &, andk.

a) Equation (3-73) foty, () is a rather formidable expression. It can be broken
down into three portions, each with a certain purpose. Identify the three parts
and state the role that each plays in meeting the mathematical requirements
onvyr.

b) Produce expressions for the normalized harmonic oscillatorawti®, 1, 2.

Operate explicitly onjg with A and show that)g is an eigenfunction having
eigenvalueiv/2.

. a) Atwhat values ofy doesy, have a node?

b) At what values ofy doeswz2 have its maximum value?

Give a simple reason why (2 y — 3y2)exp(—»?/2) cannot be a satisfactory
wavefunction for the harmonic oscillator. What abouteXp(+)2/2)? You
should be able to answer by inspection, without calculation and without reference
to tabulations.

Consider the functio32x> — 1603 + 120v) exp(—x2/2).

a) How does this function behave at large valueso? Explain your answer.
b) What can you say about the symmetry of this function?
¢) What are thevalueandslopeof this function atc = 07?

Let f(x) =3cosx +4. f(x)isexpressed as apower seriesin/(x)=>_ c,x",
withn=0,1,2,....

a) What is the value aofy?
b) What is the value of1?

Only one of the following isH5(y), a Hermite polynomial. Which ones are not,
and why?

a) 16y°+ 130y
b) 24y°—110y°+ 90y — 18
c) 32)° — 160y + 120y
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3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.

3-21.

3-22.

3-23.

Sketchthe function (1— 2x?) exp(—x?) versusx.

Giventhat/y” x exp(—x?) dx =1/2, and[;° x? exp(—x?) dx = /7 /4, evaluate

a) ffoooxexp(—xz)dx
b) /70 x? exp(—x?)dx

Evaluate/_(x + 4x3) exp(—5x?) dx.

For then = 1 state of the harmonic oscillator:

a) Calculate the values of the classical turning points.

b) Calculate the values of the positions of maximum probability density.

¢) What is the probability for finding the oscillator betwees 0 andx = co?

d) Estimate the probability for finding the oscillator in aline incrementequal
to 1% of the distance between classical turning points and centered on one of
the positions of maximum probability density.

Calculate the probability for finding the ground state harmonic osciltzgond
its classical turning points.

Use the differential expression (3-63) for Hermite polynomials to prodi¢e).
Use the generating function (3-65) to produés y).

Write down the Schadinger equation for a three-dimensional (isotropic) har-
monic oscillator. Separate variables. What will be the zero-point energy for
this system? What will be the degeneracy of the energy level having a value of
(9/2)hv? (5/2)hv? Sketch (roughly) each of the solutions for the latter case
and note their similarity to case (b) in Fig. 2-16.

Supposéd’ (x) = (1/2)kx2 for x > 0, andoo for x < 0. What can you say about
the eigenfunctions and eigenvalues for this system?

a) EvaluateHs(x) atx =2.
b) EvaluateH>(sing) ato = 30°.

What is the average potential energy for a harmonic oscillator whes? What
is the average kinetic energy?

Each degree of translational or rotational freedom can contribute%lﬁ to the
molar heat capacity of an ideal diatomic gas, whereas the vibrational degree of
freedom can contribute up t®. Explain.

Calculate the force constants for vibration if°R, H3°CI, H81Br, and H?,
given that the infrared absorptions for the=0 to n = 1 transitions are seen,
respectively, at 4138, 2991, 2649, and 2308 ¢mVhat do these force constants
imply about the relative bond strengths in these molecules?
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Multiple Choice Questions
(Try to answer these without referring to the text.)

1. Which one of the following statements conflicts with the quantum mechanical results
for a one-dimensional harmonic oscillator?

a) The smaller the mass of the oscillating particle, the greater will be its zero-point
energy, for a fixed force constant.

b) The frequency is the same as that of a classical oscillator with the same mass and
force constant.

c¢) Increasing the force constant increases the spacing between adjacent energy
levels.

d) The spacing between adjacent energy levels is unaffected as the vibrational quan-
tum number increases.

e) The vibrational potential energy is a constant of motion.

2. A quantum-mechanical harmonic oscillator

a) spends most of its time near its classical turning points in its lowest-energy state.
b) hasy =0 at its classical turning points.

c) has doubly degenerate energy levels.

d) has energy levels that increase with the square of the quantum number.

e) None of the above is a correct statement.

3. Light of wavelength 83 x 10~ m excites a quantum-mechanical harmonic oscilla-
tor from its ground to its first excited state. Which one of the following wavelengths
would accomplish this same transition if i) the force constant only was doubled? ii)
the mass only was doubled?

a) 433x10°m
b) 216x 106 m
c) 306x10°°m
d) 612x10%m
e) 866x10°%m

4. For a classical harmonic oscillator, the probability for finding the oscillator in the
middle 2% of the oscillation range is

a) greater than 0.02.

b) equal to 0.02.

¢) less than 0.02.

d) unknown since it depends on the force constant.
e) unknown since it depends on the amplitude.



Chapter 4

The Hydrogenlike lon, Angular
Momentum, and the Rigid Rotor

[ J 4-1 The Schriodinger Equation and the Nature
of Its Solutions

4-1.A The Schrodinger Equation

Consider the two-particle system composed of an electron (charyand a nucleus
having atomic numbeZ and chargeZe. (See Appendix 12 for values of physical
constants, such as) Letx1, y1, z1 be the coordinates of the nucleus and y», z»
be those for the electron. The distance between the particles is,[then; x2)2 +
(y1 — 12)? + (z1 — z2)?1%/2. The potential energy is given by the product of the charges
divided by the distance between theme i expressed in coulomb€,, the potential
energy in joules is
2
V= —Ze¢ — (4-1)
47 0 [(x1 — x2)2 + (1 — y2)2 + (21— 22)2]

where g is the vacuum permittivity (8542x 10712 J-1 ¢2 m™1). The time-
independent Scbdinger equation for this system is

_h2 82 N 82 N 82 h2 82 N 82 N 82
8m2M \ 8x? 8y 9z2) 8nPme\dxZ 8y 823
Ze?

B 1/2
Ao [(r1 — x2)2+ (1 — y2)2 + (21 — 22)2] 7
= EvY(x1, ¥1, 21, X2, 2, 22) (4-2)

where M and me are the masses of the nucleus and electron, respectively. The
hamiltonian operator in brackets in Eq. (4-2) has three terms, corresponding to a
kinetic energy operator for the nucleus, a kinetic energy operator for the electron, and
a potential term for the pair of particles.

Equation (4-2) has eigenfunctiogisthat are dependent on the positions of both the
electron and the nucleus. It is possible to convert to center-of-mass coordinates and
then to separate Eq. (4-2) into two equations, one for the motion of the center of mass
andone for a particle of reduced mass moving around a fixed center to which it is
attracted in exactly the same way the electron is attracted to the nudBagause this

} ¥ (X1, Y1, 21, X2, Y2, 22)

89
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conversion is rather tedious, we will not perform it in this bddiyt merely discuss the
results. The first of the two resulting equations treats the center of mass as a free particle
moving through field-free space; its eigenvalues are sirtrplyslational energies of

the ion. For us, the interesting equation is the second one, which is

—h? (32 N 32 N 32) Zé? " \
— |\ —+—+—=)- X, ),z
8r2u \9x2 ~ 8y2 922 4gpeg (x2+y2+zz)1/2
=Ey(x,y,2) (4-3)

The quantityu is thereduced masfor the particle in our center-of-mass system, and
is given by

u=meM/(me+ M) (4-4)

The coordinates, y, andz are the coordinates of the reduced-mass pastiitterespect
to the center of mass of the system

Even without going through the detailed procedure of converting to center-of-mass
coordinates, we can show that Eq. (4-3) makes sense. In the idealized case idavhich
is infinitely greater thame, u equalsne, and Eq. (4-3) becomes just the Sathiriger
equation for the motion of an electron about a fixed nucleus at the coordinate origin.
For real atoms or ions this would not be a bad approximation because, even in the
case of the lightest nucleus (i.e., the hydrogen atdhjs nearly 2000 times:e, and
so . is very close tone, and the center of mass is very near the nucleus. Therefore,
the result of using center-of-mass coordinates to separate thed8aei’ equation is
almost identical to making the assumption at the outset that the nucleus is fixed, and
simply writing down the one-particle Sakdinger equation:

—h? < 3% 9% 97 ) Ze?
—t+—+-—]—- Yv(x,y,2)=E¥(x,y,2) (4-5)
: 8mZmg \ 9x2  9y2  3z2 4rreg (x2+ 2+ 22) 1/2

The use ofne instead ofu [i.e., Eq. (4-5) instead of (4-3)] has no effect on the qual-
itative nature of the solutions. However, it does produce small errors in eigenvalues—
errors that are significant in the very precise measurements and calculations of atomic
spectroscopy (Problem 4-1). In what follows we shall usebut for purposes of
discussion we will pretend that the nucleus and center of mass coincide.

Equation (4-3) can be transformed into spherical polar coordinates. (Some important
relationships between spherical polar and Cartesian coordinates are given in Fig. 4-1).
The result is

[(—h?/82un) V2 — (Ze? /A eor) |V (r, 6, ) = EYr (r, 6, ¢) (4-6)

Herev? is understood to be in spherical polar coordinates. In these coordinates it
looks quite complicated:

190 0 1 0 0 1 92
2 2 —(sin0— |+ ———— 4
V4= _ — )+ - sing -7
29y (r ar) r2sing 96 ( 89) r2sin? 9 d¢p2 *7)

1see, for example, Eyrinet al. [1, Chapter VI] or Levine [2, pp. 127-130].
23ee, e.g., Eyring et al. [1, Appendix Il1].
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Figure 4-1 » The spherical polar coordinate system. The aiggle called the azimuthal angle.
Notice that the differential volume elementistequal todr d6 d¢ and that the ranges of values for
r, 6, ¢ arenot —oo to +oc0.

However, this coordinate system is the natural one for this system and leads to the
easiest solution despite this rather formidable looking operator.
Notice that the potential term, Ze?/4m sor, has nd@ or ¢ dependence. The potential
is spherically symmetric However,0 and¢ dependence does enter the hamiltonian
throughv?, so the eigenfunctiong may be expected to show angular dependence.
Next we describe the solutions of the Sathiriger equation (4-6), relegating to later
sections the mathematical details of how the solutions are obtained.

EXAMPLE 4-1 Using the spherical polar coordinate system of Fig. 4-1, calculate
the volume occupied by the skin of a spherical shell, where the inside radius of the
skin is 100.0 mm and the thickness of the skin is 1.000 mm.

SOLUTION » One way to solve this problemis to calculate the volume inside the entire sphere,
including the skin, and then to subtract the volume of the sphere occupying the space inside the
skin. The formula for the volume of a sphere of radiusn be calculated fromv by integrating

r from O tor, 6 from O torr, and¢ from O to 2r:

r 2 b4 2 ’,3 o
14 :/ r dr/ sin@d@/ dp=—| - —cosh|" - ¢p|
0 0 0 3 0 0 0

3
= %(—(—1— 1) 27 = gnr?’

(You presumably already knew this formula, but it is useful to review how it comes out of this
integration.) Proceeding,
Vskin = V (r=101 mm — ¥ (r = 100 mm)

gn[(101 mm>3 — (100 mm3] = 1.269x 10°mm3

Another way (slightly less exact) to approximate this volume is to calculate the area of the spherical
shell (47 r2) and multiply by its thickness:
V ~4rr?Ar = 47(100 mm?.1.00 mm
= 1.257x 10° mm®

For a skin whose thickness is small compared to its radius, we see that this approximation is
very good. <
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4-1.B The Nature of the Eigenvalues

The potential energy—Ze?/4reqr, becomes negatively infinite when= 0 and
approaches zero adecomes very large. This potential is sketched in Fig. 4-2 for the
case in whichZ = 1. We expect the energy levels to diverge less rapidly here than was
the case for the harmonic oscillator since the “effective box size” increases more rapidly
with increasing energy in this case than in the harmonic oscillator case. (See Fig. 2-3
for the one-dimensional analogs.) Since the harmonic oscillator levels are separated by
aconstant/v, for one-or three-dimensional cases), the hydrogenlike ion levels should
convergeat higher energies. Figure 4-2 shows that this is indeed the case. Furthermore,
by analogy with the case of the particle in a box with one finite wall, we expect the
allowed energies to form a discrete set for the classically trapped elediren0j
and a continuum for the unbound cas&s>{ 0). Thus, the spectrum of eigenvalues
sketched in Fig. 4-2 is in qualitative accord with understandings developed earlier.
The lowest allowed energy for the system is far above the low-energy hmit)(of
the potential well. This corresponds to the finite zero point energy which we have seen
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Figure 4-2 » The potential function/ = —e2/47rsor with eigenvalues superimposed (dashed
lines). Degeneracies for the first few levels are noted on the right.
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in other systems where particle motion is constrained. Here it means that, at absolute
zero, the electron does not come to rest on the nucleus (which wouldl'givé,
V = —00, E = —00), but rather continues to move about with a finite total energy.

All of the energy levels of Fig. 4-2 are degenerate except for the lowest one. The
order of the degeneracy is listed next to each of the lowest few levels in Fig. 4-2.
This degeneracy is not surprising since we are dealing here with a three- dimensional
system, and we have earlier seen that, in such cases (e.qg., the cubic box), the physical
equivalence of different directions in space can produce degeneracies (called “spatial
degeneracies”). We shall see later that some of the degeneracies in this system do
indeed result from directional equivalence (here, spherical symmetry), whereas others
do not.

The discrete, negative eigenvalues are given by the formula

—;LZze4 72

=———=(-136058eV}—, n=1,2,3,... 4-8
el Vs n (4-8)

n
n2’

EXAMPLE 4-2 Calculate the ionization energy £) of C>* in its ground state, in
electron volts.

SOLUTION » The ionization energy equals the negative of the ground state engrgy6 and
n=1,solE = (136058 eV 3& = 489808 eV. <

4-1.C The Lowest-Energy Wavefunction

We will now discuss the lowest-energy eigenfunction of Eq. (4-6) in some detail, since

an understanding of atomic wavefunctions is crucial in guantum chemistry. The deriva-

tion of formulas for this and other wavefunctions will be discussed in later sections,

but it is not necessary to labor through the mathematical details of the exact solution of

Eq. (4-6) to be able to understand most of the essential features of the eigenfunctions.
The formula for the normalized, lowest-energy solution of Eq. (4-6) is

W (r) = (1//m)(Z /a0)¥* exp(— Zr /ag) (4-9)

whereag=5.2917706x 10~ 11 m (called theBohr radiug andZe is the nuclear charge.
A sketch ofyr versus- for Z =1 is superimpaosed on the potential function in Fig. 4-3a.
It is apparent that the electron penetrates the potential barrier (Problem 4-3).

The square of the wavefunction (4-9) tells us how the electron is distributed about
the nucleus. In Fig. 4-3b is plottefl?(r) as a function of-. We refer toy? as the
electron probability density functionn this case, the probability density is greatest at
the nucleus{=0) and decays to zero adecomes infinite.

It is important for the chemist to be able to visualize the electron distributions, or
charge “clouds,” in atoms and molecules, and various methods of depicting electron
distributions have been devised. In Fig. 4-3 a few of these are presented for the lowest-
energy wavefunction. The dot picture (Fig. 4-3c) represents what one would expect
if one took a multiflash photograph of a magnified, slowed-down hydrogenlike ion
(assuming no disturbance of the ion by the photographing process). Each dot represents
aninstantaneous electron position, and the density of these dotsis greatest at the nucleus.
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