

BHU M.Sc. CHEMISTRY ENTRANCE - 2014

Time: 2½ Hours Full Marks: 450

Instructions:

(i) Attempt as many questions as you can. Each question carries **3 marks**. **One mark** will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

(ii) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

1.	Oxine	compound	can better	be	estimated	by

(1) gravimetric method

(2) conductometric method

(3) potentiometric method

- (4) bromate- bromide reaction method
- 2. The indicator Eriochrome black-T can only be used in the complexo-metric titrations of metal ion at pH
 - (1) 7.0

- (2) 5.0
- (3) 10.0
- (4) 12.0
- 3. The disodium salt of EDTA is always used metal analysis because
 - (1) it severely imparts alkanity to the test solution
 - (2) it moderately imparts acidity to the test solution
 - (3) it severely imparts acidity to the test solution
 - (4) it moderately imparts alkanity to the test solution
- 4. The stability constant for the metal-EDTA complex should be
 - (1) smaller than that for metal-Eriochrome-T complex
 - (2) equal to the stability constant of metal-Eriochrome-T complex
 - (3) greater than that for metal-Eriochrome-T complex
 - (4) the half of the stability constant of metal-Eriochrome-T complex
- 5. The quadrivalent cerium is used for the titration of reductants only in
 - (1) Strong basic medium

(2) Weak basic medium

(3) Strong acidic medium

- (4) Weak acidic medium
- 6. Which one is widely used as a primary standard in redox titrimetry?
 - (1) Iodine

(2) Arsenic (III) oxide

(3) Sulfanilamide

- (4) 8-hydroxy quinoline
- 7. In isotope dilution method for the determination of iron, W_0 g of iron as $^{59}\text{FeCl}_3$, that has a specific activity A_0 , was mixed so that ^{59}Fe is equally distributed throughout the sample. A portion of the total iron is then isolated in a pure weighable form that has the specific activity A_1 . If the original sample contained W_1 g of iron, then the fraction of initial activity found in this portion can be expressed as

(1)
$$W_1 = W_0 \left(\frac{A_0}{A_1} - 1 \right)$$

(2)
$$W_1 = W_0 \left(1 - \frac{A_0}{A_1} \right)$$

(3)
$$W_0 = W_1 \left(\frac{A_0}{A_1} - 1 \right)$$

(4)
$$W_0 = W_1 \left(1 - \frac{A_0}{A_1} \right)$$

- 8. The equivalence point potential for the titration of Ce(IV) with standard Fe(II) is
 - (1) 0.76 V

(2) 1.06 V

(3) 2.12 V

(4) 1.44 V

[given: $E^0 Ce^{4+} / Ce^{3+} = 1.44V$, $E^0 Fe^{3+} / Fe^{2+} = 0.68$]

- The Mohr's salt is 9.
 - (1) $\text{Fe}(NH_4)_2(SO_4)_2 \cdot 6H_2O$

(2) $\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4 \cdot 3\text{H}_2\text{O}$

(3) $2\text{FeSO}_4(\text{NH}_4)_2\text{SO}_4 \cdot 6\text{H}_2\text{O}$

(4) $\text{FeSO}_4 \cdot 2(\text{NH}_4)_2 \text{SO}_4 \cdot 6\text{H}_2\text{O}$

10. The bromate-bromide reaction is

$$BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$$

The librated Br₂ is titrated with standard sodium thiosulfate solution. The one mol potassium bromate can thus be equated to

(1) 1 mol $S_2O_3^{2-}$

(3) 6 mol $S_2O_3^{2-}$

- (2) 3 mol S₂O₃²⁻ (4) 9 mol S₂O₃²⁻
- A 50.0 mL aliquot of 0.05m ammonia is titrated with 0.10 m acetic acid. What would be the nature of the 11. solution at the equivalence point?
 - (1) slightly acidic

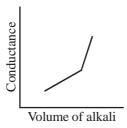
(2) slightly basic

(3) turbid

- (4) neutral
- The pH values of 10⁻⁹ M HCl, 1.0 M HCl, and 10⁻² M NaOH could respectively be obtained as 12.
 - (1) 9.0, 1.0, 2.0

(2) 6.9, 0.0, 12.0

(3) 7.0, 0.1, 2.1


- (4) 9.1, 6.9, 12.1
- 13. The H⁺ ion has abnormally high mobility in comparison to other monovalent ions since
 - (1) H⁺ ion is smallest in size

- (2) H⁺ ion is largest in size
- (3) H⁺ ion follows hopping mechanism in solution
- (4) H⁺ ion concentration mechanism high
- 14. The methyl orange indicator in strong acid vs strong base
 - (1) cannot be used

(2) can be used

(3) can be used with insignificant

- (4) can be used with large titration error
- 15. The conductometry titration curve given below

represents a titration involving

(1) Strong acid VS strong base

(2) Weak acid VS strong base

(3) Strong acid VS weak base

- (4) Weak acid VS weak base
- A common expression for the distribution coefficient (K) in ion-exchange resin is 16.
 - (1) K = amount of ion/mL of solution
- (2) K = amount of ion/1000mL of solution
- (3) $K = \frac{\text{amount of ion/g of dry resin}}{\text{amount of ion/1000g of dry resin}}$
- (4) $K = \frac{\text{amount of ion/g of dry resin}}{\text{mount of ion/g of dry resin}}$ amount of ion/mLg of solution

- 17. Which ones are strong cation and strong anion exchange resins?
 - (A) Sulfonated polystyrene

- (B) Condensed acrylic acid
- (C) Polystyrene with CH₂N Me₃Cl
- (D) Polystyrene with sec- amine

Answer Codes:

(1) A and C

(2) B and D

(3) A and D

- (4) C and D
- 18. The height equivalent to a theoretical plate (HETP) can be expressed in terms of the column length (L), retention (t_R) , and the peak-width (W) as
 - (1) HETP = $\frac{L}{16} \left(\frac{W}{\epsilon t_R} \right)^2$

(2) HETP = $\frac{16}{L} \left(\frac{t_R}{W} \right)^2$

(3) HETP = $16 \left(\frac{L \times t_R}{W} \right)^2$

- (4) HETP = $16 \left(\frac{t_R}{W} \right)^2$
- 19. The best procedure to improve resolution between two chromatographic peak is
 - (1) increasing column-length, decreasing band-width
 - (2) decreasing column-length, increasing band-width
 - (3) increasing column-length, increasing band-width
 - (4) decreasing column-length, decreasing band-width
- 20. The Van Deemter equation in terms of coefficient of multiple path effect (A), coefficient of longitudinal diffusion (B), coefficient of mass transfer (C), and linear velocity of mobile phase (u) can be represented as
 - (1) H = A + B/u + Cu

(2) H = B + A/u + Cu

(3) H = A + B/u + C/u

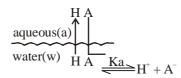
- (4) $H = A/u + B/u + Cu^2$
- 21. The isocratic elution in chromatography can be defined as
 - (1) elution under conditions of constant temperature and pressure
 - (2) elution under conditions of variable temperature and pressure
 - (3) elution under conditions of constant mobile-phase composition
 - (4) elution under conditions of varying mobile-phase compositions
- 22. Which one could **not** be an ideal detector in gas chromatography?
 - (1) Photo-multiplier tube

(2) Flame-ionization detector

(3) Thermal-conductivity detector

- (4) Electron-capture detector
- 23. In reversed-phase chromatography, which statement is **correct**?
 - (1) The least polar component is eluted first and increasing the polarity of the mobile-phase decreases the elution time
 - (2) The most polar component elutes first and increasing the mobile-phase polarity increases the elution time
 - (3) A non-polar component is eluted first without having any effect of the polarity of the mobile-phase
 - (4) There is no effect of polarity either of the component or the mobile-phase
- 24. For non-polar analytes having molecular mass greater than 10,000, one of the best HPLC technique would be
 - (1) ion-exchange chromatography

- (2) liquid-liquid partition chromatography
- (3) liquid-bonded phase partition chromatography
- (4) gel permeation chromatography


25. Two sets of the percentage iron in a sample resulted in the following data (true value = 36.32)

$$\bar{X} + S_x = 36.27 \pm 0.16 N_x = 5$$

$$\bar{Y} + S_v = 36.34 \pm 0.22 \ N_v = 8$$

Which set of data is more accurate?

- (1) X set
- (2) Y set
- (3) both sets
- (4) No sets
- 26. If 'X' is an acid (HA), the pictorial representation of solvent extraction of 'X' can be depicted as

The relationship between distribution ratio (D) and distribution coefficient (K_D) can be obtained as

(1) $D = \frac{K_D}{1 + K_a / [H^+]_w}$

(2) $K_D = \frac{D}{1 + [H^+]_w / K_a}$

(3) $D = \frac{1 + K_a / [H^+]_w}{K_D}$

- (4) $K_D = \frac{1 + K_a / [H^+]_w}{D}$
- 27. Employing Nernst's distribution law, V mL of solution containing W g of solute is repeatedly extracted with v mL of another solvent which is immiscible with first one. In nth operation mass of solute (W_n) that remain extracted will be
 - $(1) \quad W_{n} = W \left(\frac{K_{D}V}{K_{D}V + v} \right)^{n}$

(2) $W_{n} = W \left(\frac{K_{D}V + v}{K_{D}V} \right)^{n}$

(3) $W_{n} = W \left(\frac{K_{D} v}{K_{D} V + v} \right)^{n}$

- (4) $W_{n} = W \left(\frac{K_{D}V + V}{K_{D}V + V} \right)^{n}$
- 28. A solution containing n independently absorbing species, the total absorbance is represented in terms of molar absorptivity (\in), analyte concentration (c) and path length (b) as
 - (1) $A = [\in_1 c_1 + \in_2 c_2 + \dots \in_n c_n]b$
- (2) $A = [\epsilon_1 c_1^2 + \epsilon_2 c_2^2 + \dots \epsilon_n c_n^2]b$
- (3) $A = [\epsilon_1 c_1^n + \epsilon_2 c_2^n + \dots \epsilon_n c_n^n]b$
- (4) $A = [\epsilon_1 \ c_1 + \epsilon_2 \ c_2 + \dots \epsilon_n \ c_n]b/n$
- 29. Beer's law governs the behaviour of
 - (1) dilute solutions ($\leq 0.1 \text{ M}$) only

- (2) concentrated solutions ($\geq 0.1 \text{ M}$) only
- (3) dilute solutions ($\leq 0.01 \text{ M}$) only
- (4) concentrated solutions ($\geq 1.0 \text{ M}$) only
- 30. The units of absorbance (A) and molar absorptivity are, respectively
 - (1) no unit and dm³ mol⁻¹ cm⁻¹

(2) $dm^3 mol^{-1} cm^{-1}$ and no unit

(3) mol.cm⁻¹ and dm³ mol⁻¹ cm⁻¹

(4) both have no unit

- 31. The Beer's law is not obeyed if
 - (1) monochromatic light is not used

(2) monochromatic light is used

(3) polychromatic light is not used

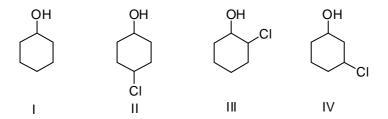
(4) polychromatic light is used

32.	Iron (III) can quantitatively b species is	e extracted from hydroc	hlori	c acid medium i	nto d	liethyl ether. The extracte
	(1) Fe(III)[$(C_2H_5)_2O$] ⁻ ₂		(2)	FeCl ₃ ·H ₂ O·(С.Н.	.).0
	(3) FeCl ₄ : $H^+[(C_2H_5)_2O]^2$			3 2		$eCl_4[(C_2H_5)O]^-,$
33.	Marble wall may be affected	with atmospheric sulfur		2 3 2	,	2115/01/2
	(1) receptor	William Spring Switch		precipitator		
	(3) sink			neutralizer		
34.	Which is called as 'killer' spe	cies in the environment	` ′			
	-	(2) NO ₂		CO	(4)	CO ₂
35.	The dissolved oxygen in wat	2	(-)		()	- 2
	(1) the Volhard method	J	(2)	the Fajans me	thod	
	(3) the Mohr method			the Winkler's		od
36.	The altitude of troposphere is	3	` ′			
	(1) 0-11 km		(2)	11-50 km		
	(3) 50-85 km		(4)	85-500 km		
37.	Which one is not a primary a	ir pollutant?				
	(1) CO ₂	-	(2)	CO		
	(3) NO22		(4)	SO_2		
38.	The domestic waste water inv	volves the following seq	uence	e of treatments		
	(1) Screening, Sedimentation	, aerobic digestion, incin	eratio	on		
	(2) Sedimentation, aerobic di	gestion, screening, incin	eratio	on		
	(3) Aerobic digestion, screen	ing, sedimentation, incin	eratio	on		
	(4) Incineration, aerobic dige	stion, screening, sedimen	ntatio	on		
39.	For which of the following io	ons is the colour in aque	ous s	solution not cau	ised l	by any d - d transition?
	$(1) \text{ MnO}_4^-$			VO^{2+}		
	(3) MnO_4^{2-}		(4)	Mn^{3+}		
40.	Which salt upon heating prod	luces oxygen?				
	(1) potassium oxide		(2)	potassium chlo	rate	
	(3) potassium chloride		(4)	potassium carl	onat	te
41.	Which of the following isotop		_	• • •		
	$(1)^{-11}C$	$(2)^{-12}C$	(3)	¹³ C	(4)	¹⁴ C
42.	From each pair given below	•	large	er is size		
	$[\text{Co}^{2+}, \text{Co}^{3+}] [\text{Fe}^{2+}, \text{Zn}^{2+}] [\text{N}]$	$Na^+, F^-] [O^{2-}, S^{2-}]$				
	(1) Co^{2+} , Zn^{2+} , F^- , S^{2-}			Co^{3+} , Fe^{2+} , N		
	(3) Co^{2+} , Fe^{2+} , F^- , S^{2-}			Co^{3+}, Zn^{2+}, N		
43.	Which one, among the given	atoms, has the highest i	numb	er of unpaired of	electr	ons in its ground state?
	(1) B	(2) C	(3)	N	(4)	O
44.	Which halide of silver is solu	ble in water?				
	, , ,	(2) AgCl	` '	AgBr	(4)	AgI
45.	How many moles of water w			. 10		
	(1) 1 mole	(2) 2 moles	(3)	4 moles	(4)	6 moles

46.	2 3	is prepared by reacting 1 ration, what is the percentage		les of B ₂ . If 0.25 mole of A ₂ B	3 is		
	(1) 25%	(2) 50%	(3) 75%	(4) 100%			
47.	` '	` '	` '	ic acid and the resultant solution	n i		
т/.		N sodium hydroxide. What	-		/11 1 ₁		
	(1) 5 ml	(2) 10 ml	(3) 20 ml	(4) 30 ml			
48.	` '	` '	` '		are		
 0.	An aqueous solution of a substance gives a white precipitate when a few drops of sodium hydroxide are added. The precipitate dissolves when excess of sodium hydroxide is added. The substance may be						
	(1) aluminium sulphat		(2) silver nitra				
	(3) cadmium chloride		(4) mercuric o				
49.	` '	e used to test for sulphate	` '				
	(1) hydrochloric acid		(2) nitric acid				
	(3) magnesium chlori		(4) barium ch	loride			
50.	· · · · ·	es in a FCC lattice. How n	` '				
	(1) 1	(2) 2	(3) 3	(4) 4			
51.	` '	n state of iron in Na ₂ [Fe(Co	` '	, ,			
	(1) -2	(2) -1	(3) 0	(4) 2			
52.	` '	of a 0.001 M solution of	CaCl, in water (M. V	V. of $CaCl_2 = 111g$)?			
	(1) 1 m	(2) 0.001 m	(3) 0.111 m	(4) 111 m			
53.	What is the charge (1	n) on the silicate ion $Si_2O_7^n$?				
	(1) -2	(2) -4	(3) -6	(4) -7			
54.	Silver is extracted from role of NaCN is to	om the crude metal by leach	ning with a solution o	of NaCN in the presence of air.	The		
	(1) oxidize Ag to Ag	+	(2) form the c	complex [Ag(CN) ₄] ³⁻			
		(3) form the complex $[Ag(CN)_4]^{2-}$ (4) form the complex $[Ag(CN)_2]^{-}$					
55.	$CoCl_4^{2-}$ and $Co(H_2O)_6^{2+}$ have different colours. This is because						
	(1) they have Co in different oxidation states						
	(2) $CoCl_4^{2-}$ is tetrahedral while $Co(H_2O)_6^{2+}$ is octahedral						
	•	nt number of unpaired elect					
		e planar while $Co(H_2O)_6^{2+}$					
56.	•	agent is used to test for					
	(1) Ca^{2+}	(2) Ni^{2+}	(3) Fe^{3+}	(4) Al^{3+}			
57.	Which molecule has	zero bond order?					
	(1) H_2^+	(2) H_2	(3) HeH	(4) He ₂			
58.	What is the bond ord	ler in NO molecule?		2			
	(1) 2.5	(2) 2	(3) 1.5	(4) 1			
59.	Which of the following	ng is an example of a non-p	olanar molecule (or ic	on)?			
	(1) carbonate		(2) perchlorat	e			
	(3) xenon tetrafluorid	le	(4) boron trifl	uoride			
60.	CuI ₂ is unstable beca	use, it readily decomposes	to:				
	(1) Cu and I^-		(2) Cu and I_2				
	(3) CuI and I ₂		(4) CuI and I				

61.	Which one among the characteristics solutions?	nlorides, ZnCl ₂ , HgCl ₂ ,	BaCl ₂ , AlCl ₃ , is dissociated	to the least extent in aqueous
	(1) ZnCl ₂	(2) HgCl ₂	(3) CaCl ₂	(4) AlCl ₃
62.	Which one among the gi	<i>L</i>	<u>~</u>	(1) 111013
02.	(1) Na ⁺	(2) Ca^{2+}		(4) Al^{3+}
63.	Which compound can a	· /		(1) 111
05.	(1) H ₂ O	(2) SnCl_2		(4) BF ₃
64.	· · · <u>2</u>	2	J	d by several oxides as well as
O -7.		5		s a known fluoride having the
	(1) CaTiF ₃	(2) KMnF.	(3) $NaMnF_4$	(4) CaFeF.
65.	J	5	•	t structure. What happens to
00.	the coordination number		gos as structure to room sur	t structure. What happens to
	(1) changes from 6 to 1	12	(2) changes from 8	to 12
	(3) changes from 8 to 6		(4) does not change	
66.	The bond angles in amm		<u> </u>	
	(1) 90 degrees		(2) exactly tetrahedr	al
	(3) larger than tetrahedr	al	(4) less than tetrahed	
67.	` '		ement each from s-block, p-	
	(1) Na, K, Fe	\mathcal{E}	(2) Rb, Ru, Sb	
	(3) B, Cl, Sr		(4) Sc, Pt, Se	
68.	Which ligand can lead to	linkage isomers?		
	(1) azide	(2) cyanate	(3) oxalate	(4) nitrate
69.	If you were to prepare [· · · · · ·		how many isomers, including
	geometrical and optical,			
	(1) only one		(2) two	
	(3) three		(4) four	
70.	Which of the followin	g molecules / ions e	khibit isomerism? (1) Pt(N	NH_3 ₂ Cl ₂ ; (2) $Ni(NH_3)$ ₂ Cl ₂ ;
	$(3) Cu(H_2O)_3Cl_3; (4) [C$			322
	(1) compounds (1), (3)	and (5)	(2) compounds (1),	(2) and (3)
	(3) compounds (2), (3)	and (4)	(4) compounds (1),	(3) and (4)
71.	What is the change in ox	xidation state of cobalt	n the following reaction?	
	$[Co(NH_3)_4Cl_2]^+ + H_2O$	$\rightarrow [Co(NH_3)_4(H_2O)O]$	$[1]^{2+} + C[1]^{-}$	
	(1) increases from +2 to	0 +3	(2) decreases from	+3 to +2
	(3) increases from +1 to	o +2	(4) does not change	
72.	Identify the acids in the f	following two reactions		
	$NOF + ClF_3 = NO + O$	ClF ₄ -		
	$XeO_3 + OH^- = HXeO_2$	_ -		
	(1) ClF_3 and XeO_3		(2) ClF ₃ and OH ⁻	
	(3) NOF and OH ⁻		(4) NOF and XeO ₃	;
73.	Which is the most comm	non oxidation state obse	rved for the lanthanide elen	nents in their compounds?
	(1) -1	(2) +2	(3) +3	(4) +4

- The magnetic moment of $[Co(H_2O)]^{3+}$ is zero and that of $Mn(CN)_6]^{3-}$ is 2.9 B.M. From this it may be 74. concluded that
 - (1) both ions are high spin
 - (2) both ions are low spin
 - (3) $\operatorname{Co(H_2O)_6^{3+}}$ is low spin, $\operatorname{Mn(CN)_6^{3-}}$ is high spin
 - (4) $Co(H_2O)_6^{3+}$ is diamagnetic, $Mn(CN)_6^{3-}$ is high spin
- 75. Which set contains two diamagnetic compounds?
 - (1) $[K_2CoCl_4, Cu(SCN), Na_2PdCl_4]$
- (2) $[CuCl_2, CuI, Cr(NH_3)_4Cl_2]$


(3) [Na₂NiCl₄, GdCl₃, Ag₂S]

- (4) [NiO, Fe_3O_4 , $Ru(NH_3)Cl_3$]
- 76. Which one of the following reagents is a nucleophile?
 - (1) BF₂

- (2) SO₂
- (3) CCl₂
- (4) NH₂
- Which reactive intermediate is belived to be part of the reaction shown? 77.

$$\begin{array}{l} {\rm RCH} = {\rm CH}_2 \xrightarrow{\quad {\rm HBr,\,ROOR} \quad } {\rm RCH}_2 {\rm CH}_2 {\rm Br} \\ {\rm (1) \ \, Free \, radical} & {\rm (2) \ \, Carbocation} \\ \end{array}$$

- (3) Bromonium ion (4) Oxacyclopropane
- 78. Rank the following alcohols in order of increasing acidity

Answer Codes:

(1) I < II < III < IV

(2) I < II < IV < III

(3) I < III < IV < II

- (4) IV < I < III < II
- 79. The mechanism of chlorination of methane does **not** actually involve one of the following steps
 - (1) $Cl_2 \xrightarrow{hv} 2Cl$

(2) $Cl \cdot + CH_4 \rightarrow HCl + CH_3^{\bullet}$

(3) $Cl \cdot + CH_4 \rightarrow CH_3Cl + H \cdot$

(4) $CH_3^{\bullet} + Cl_2 \rightarrow CH_3Cl + Cl^{\bullet}$

80. In this transformation

What is the best structure for A?

(1) $BrCH_2CH_2CH(CH_3)_2$

 $\begin{array}{ccc} \text{(3)} & \text{CH}_3\text{CH}_2\text{CHCH}_3 \\ & & \text{CH}_2\text{Br} \end{array}$

 $(4) \quad \mathsf{CH_3CHCH}(\mathsf{CH_3})_2 \\ \mid$

- 81. When methyl bromide is hydrolyzed using hydroxide ions, methanol and bromide ions are produced. What will be the rate of reaction if the concentration of methyl bromide is tripled and that of hydroxide ions is doubled?
 - (1) No change is reaction rate

(2) Reaction rate is tripled

(3) Reaction rate is doubled

- (4) Reaction rate is increased six-fold
- 82. The major product in the reaction given below is

$$\begin{array}{c|c} CH_3CH_2 & \xrightarrow{} CH & CH_3 & \xrightarrow{} \Delta & CH_3)_3N + ? \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

(1) trans-2-butene

(2) cis-2-butene

(3) 1-butene

- (4) 2-Iodobutane
- 83. The number of isomeric olefins that result from the treatment of 2-bromopentane with NaOEt is

- (2) two
- (3) three
- Pyrrole is a much weaker base than pyrrolidine (azacyclopentane) for which of the following reasons 84.
 - (1) Pyrrole is aromatic
 - (2) Pyrrole is a Lewis acid
 - (3) The nitrogen in pyrrole is more electropositive than that in pyrrolidine
 - (4) Pyrrolidine can give up the proton on the nitrogen atom more readily than can pyrrole
- 85. D-Glucose on treatment with excess of phenyl-hydrazine followed by hydrolysis of the product with aqueous HCl gives
 - (1) D-Glucosazone

(2) D-Glucosamine

(3) D-Glutaric acid

- (4) D-Glucosone
- Quinoline is obtained by heating a mixture of aniline, nitrobenzene, glycerol, conc. Sulphuric acid and ferrous 86. sulphate. One of the steps in the reaction involves oxidation. What is the oxidizing agent here?
 - (1) H₂SO₄

(2) $C_6H_5NO_2$

(3) $FeSO_{4}$

- (4) Glycerol
- 87. Epimers are a pair of diastereomeric aldoses that differ only in
 - (1) configuration at C-1

(2) configuration at C-2

(3) configuration at C-3

- (4) None of the above
- Bakelite is formed by the condensation of 88.
 - (1) Phenol and formaldehyde

(2) Phenol and acetaldehyde

(3) Urea and formaldehyde

- (4) Formaldehyde and acetaldehyde
- 89. Like other oxygen-containing compounds, n-butyl tert-butyl ether dissolves in cold conc. H_2SO_4 . On standing, an acid-insoluble layer, made up of high-boiling hydrocarbon material slowly separates from the solution. What this material is likely to be?

(2) ~{~ CH~ CH *}; CH₃ CH₃

(1) $\sim \leftarrow CH_2 - CH_2 \rightarrow \sim \sim CH_2CH_3$ CH_2CH_3 (3) $\sim \leftarrow CH_2 - C \rightarrow \sim \sim \sim CH_3$ CH_3

(4) All of the above

90. Which of the following proposed reactions would take place quickly under mild conditions?

(1)
$$CH_3$$
— C — NH_2 + $NaCl$ — CH_3 — C — Cl + $NaNH_2$

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
\end{array}$$
(2) Ph — C — Cl + CH_3NH_2 — Ph_3 — C — $NHCH_3$ + HCl

(3)
$$(CH_3)_2CH-C-NH_2 + CH_3OH \longrightarrow (CH_3)_2CH-C-OCH_3 + NH_3$$

$$(4) CH_{3}CH_{2}-C-Cl+CH_{3}-C-OH\longrightarrow CH_{3}CH_{2}-C-O-C-CH_{3}+HCl$$

91. The reagent required to convert 3-hexyne into *trans*-3-hexene is

(1) H_2/Pt

(2) H₂, Pd/BaSO₄, quinoline

(3) NaBH₄

(4) Na, NH₃(liquid)

92. Among the following statements about the nitration of aromatic compounds, the false one is:

- (1) Nitration is an electrophilic substitution
- (2) The rate of nitration of benzene is almost the same as that of hexadeuterobenzene
- (3) The nitration of benzene is very much faster than that of hexadeuterobenzene
- (4) The rate of nitration of toluene is greater than that of benzene
- 93. Which of the following has the most stable conjugate acid?
 - $(1) (CH_3)_2NH$

 $(2) (CH_2)_2 N$

(3) $C_6H_5NH_2$

(4) $C_6H_5NHCH_3$

94. The conversion of ethyl methyl ketoxime to N-methyl propanamide represents an example of the following reaction

(1) Beckmann rearrangement

(2) Hofmann rearrangement

(3) Baeyer-Villiger oxidation

(4) Wolff rearrangement

95. How many moles of periodic acid are needed for the complete cleavage of one mole of Glucose into formaldehyde and formic acid?

(1) three

- (2) four
- (3) five
- (4) six

96. Which of the following compounds would not react with a dienophile in Diels-Alder reaction?

- (1) Anthracene
- (2) Phenanthrene
- (3)
- (4)

97. In the reaction

The major product obtained is

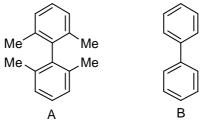
(3)
$$CH_2CH_3$$

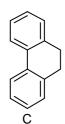
- 98. Which of the following reaction sequence represents the Strecker synthesis of an α -aminoacid?
 - (1) $RCH_2COOH \xrightarrow{Br_2/P} \xrightarrow{NH_3}$
 - (2) $R-C-COOH \xrightarrow{NH_3} H_2/Pt \rightarrow O$
 - (3) RCHO $\xrightarrow{\text{CN}^-}$ $\xrightarrow{\text{H}_3\text{O}^+}$

(4)
$$\stackrel{CO}{\downarrow}_{CO} \stackrel{+}{NK} + BrCH-COOR \longrightarrow \stackrel{H_3O^+}{\longrightarrow}$$

- 99. In the reaction : Glucose $\xrightarrow{\text{HNO}_3}$ Q, the product Q is
 - (1) Glucuronic acid

(2) Glucaric acid


(3) Gluconic acid


- (4) Glyceric acid
- 100. For electrophilic substitution in benzene derivatives, which one of the following types of substituents is unknown?
 - (1) Activating and *m*-directing

(2) Deactivating and *m*-directing

(3) Activating and o, p-directing

- (4) Deactivating and o, p-directing
- 101. Arrange the following compounds in decreasing order of reactivity towards electrophiles

Answer codes:

(1) A > B > C

(2) B > A > C

(3) B > C > A

- (4) C > B > A
- 102. Arrange the following compounds in order of decreasing ease of nucleophilic substitution reactions
 - (I) 4-Nitrochlorobenzene

(II) 2, 4-Dinitrochlorobenzene

(III) 2, 4, 6-Trinitrochlorobenzene

(IV) Benzyl chloride

Answer codes:

(1) IV > III > II > I

(2) I > II > III > IV

(3) III > II > I > IV

- (4) III > IV > II > I
- 103. Which of the following statements does **not** fit in the criteria of E2 reactions?
 - (1) follow second order kinetics

- (2) are accompanied by rearrangement
- (3) show a large deuterium isotope effect
- (4) do not undergo hydrogen deuterium exchange
- 104. Pyridine undergoes electrophilic substitution with fuming H₂SO₄ at elevated temperature to give
 - (1) Pyridine-2-sulphonic acid

(2) Pyridine-4-sulphonic acid

(3) Pyridine-3-sulphonic acid

(4) All of the above

105. Which one of the following would clearly prove the configuration of *cis*-3-hexene from *trans*-3-hexene?

(1) Boiling point

(2) Rate of hydrogenation

(3) Infrared spectrum

(4) Dipole moment

106. The reagent used in N-terminal analysis of peptides by Sanger's method is

(1) Phenyl isothiocyanate

(2) Benzyl chloroformate

(3) 2, 4-Dinitrofluorobenzene

(4) Ninhydrin

107. Teflon is obtained by polymerization of the monomer

(1)
$$CH_2 = CF_2$$

(2) $H_2C = C(CH_3)COOMe$

(3)
$$CH_2 = CHF$$

(4)
$$CF_2 = CF_2$$

108. Which one of the following statements is **true** about the β D(t) glucopyranose conformer?

(1) One OH group is axial but all remaining substituents are equatorial

(2) The CH₂OH group is axial but all remaining substituents are equatorial

(3) All groups are axial

(4) All groups are equatorial

109. But-2-ene reacts with CHCl₃ in the presence of potassium tert-butoxide to give

(1) 1, 1-dichloro-2, 3-dimethylcyclopropane

(2) 2, 3-dichlorobutane

(3) 2-Chlorobutane

(4) 1-Chlorobutane

110. Consider the following statements about conformational isomers

(I) They are interconverted by rotation about single bond

(II) The energy barrier separating them is less than 15K cal/mole

(III) They are best represented by means of Fisher projection formulae.

Of these statements

(1) I, II and III are correct

(2) I and II are correct

(3) II and III are correct

(4) I and III are correct

111. Which one of the following on reaction with phthalic anhydride in the presence of conc. H₂SO₄ gives Fluorescein?

(1) Catechol

(2) Phenol

(3) Resorcinol

(4) Hydroquinone

112.

$$CH_3$$
 $OH^- \xrightarrow{\Delta} ?$
 $H_3C CH_3$

The major product in the above reaction will be

113.	Disproportionation of ber and benzyl alcohol. The re	•	of concentrated aq	ueous alkali gives benzoate ani	or			
	(1) proton transfer from	water	(2) hydride tran	sfer from water				
	(3) proton transfer from a	aldehyde	(4) hydride tran	sfer from aldehyde				
114.	The probability of finding of C	ing a molecule with a sp	peed between C a	nd (C+1) m.s ⁻¹ at high valu	ıes			
	(1) falls off as C^{-1}		(2) falls off as -	-Log C				
	(3) falls off as $\exp(-C^2)$		(4) rises as C^2	_				
115.		-269°C and liquid H ₂ boils eservoirs at these temperat		ne efficiency of a reversible eng	ine			
	(1) 20%	(2) 80%	(3) 10%	(4) 90%				
116.	For Ne, HF, H ₂ O maxim	um entropy is prepossesse	ed by					
	(1) Ne	(2) HF		(4) H ₂ O and Ne				
117.	The condition of equilibria	um for a transformation at	constant temperatur	re is				
	$(1) \Delta S = 0$	$(2) \Delta A + W = 0$	$(3) \Delta A = 0$	$(4) \Delta G + W_{net} = 0$				
118.	The chemical potential of	a component, μ_i in a give	en mixture is					
	$(1) \left(\frac{\partial G}{\partial n_i}\right)_{T,V,n_j}$	$(2) \ \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_j}$	$(3) \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_i}$	$(4) \left(\frac{\partial G}{n_i}\right)$				
119.	For an ideal solution, the	For an ideal solution, the osmotic pressure is proportional to						
	(1) $-\ln x1$ (solvent mole fi	raction)	(2) lnx_2 (solute	mole fraction)				
	(3) x_2		(4) $c(\text{solute con})$					
120.	The Debye-Huckel limitin	g law relates						
	(1) γ_{\pm} with I		(2) γ_{\pm} with \sqrt{I}					
	(3) $ln \gamma_{\pm}$ with I		(4) $ln \gamma_{\pm}$ with	\sqrt{I}				
121.	The potential of the Ag ⁺	Ag electrode ($E^{\circ} = 0.799$	V) in a saturated so	olution of $AgI(K_{sp} = 10^{-16})$				
	(1) 1.279 V		(2) 0.319 V	ъp				
	(3) -1.279 V		(4) -0.319 V					
122.	The ratio of ΔG° to ΔH	o for reactions in lead ac	id cell is 1.36.					
	The extra 36% is the energy	rgy that						
	(1) flows as P∆V into the	he system	(2) flows in as '	TΔS° from the surrounding				
	(3) flows as TΔS° from	the system	(4) flows out as	s Q _{rev} into the surrounding				
123.		•			bs			
	N_2 is adsorbed on iron at -190°C, but not at room temperature. How ever at ~500°C, again it adsorbed to							
	(1) absorption and adsorp	ption	(2) chemisorptic	ons and physisorption				
	(3) physisorption and che	misorption	(4) both same t	ypes of adsorption				
124.	The energy of repulsion f	for molecules varies with o	istance as r^{-n} . The	commonest value of n is				
	(1) 12	(2) 6	(3) 2	(4) 1				
125.	The coefficient of diffusio	n does not proportional to						
	(1) mean free path	(2) mean velocity	$(3) (MW)^{-1}$	$(4) (MW)^{-1/2}$				

						14
126.	The molar conductance of					
	(1) increases with concentr	ration as C		creases with	concentration	on as C
	(3) remain constant			s off as \sqrt{C}		
127.	Consider an electron in a bo change, if the particle gets (1) 10 ⁴	ex of the size of an atom, 10 confined in a box of the size (2) 10^{-4}	0 ⁻¹⁰ m. By size of a r (3) 10 ⁸	nucleus, 10^{-1}	its ground s 14 m? (4) 10 ⁻⁸	state energy would
128.	The function $f(x) = 3x^2 - 3$	1 is an eigen function of the	ne operati	ion, $-(1-x^2)$	$\left(\frac{d^2}{dx^2}\right) + 2$	$x\left(\frac{d}{dx}\right)$.
	The eigen value is					
	(1) 2	(2) 6	(3) -6		(4) -2	
129.	For a system described by	$\hat{H}\psi_n = E_n \psi_n$, the value	of the $\int_{-\infty}^{\infty}$	$\nabla_{0} \Psi_{10}^* \Psi_{12} \infty T$	is	
	(1) ∞	(2) any finite number	(3) 1		(4) zero	
130.	A substance decomposes was a half life of 29000s when to	with a half life of 150000s v	when its in	nitial concen	tration 0.01	
	(1) zero	(2) 3/2	(3) 2		(4) 3	
131.	From the overpotential (η) electrodic process	$)$ vs $\log i $ (current densi	ty), one c	can evaluate	at high eno	ugh η for a given
	$(1) \alpha$	(2) i_0 only	(3) α	and i_0 both	(4) Z only	
132.	For the particle in a cubic b					e value of $\frac{8ma^2E}{A^2}$
	as 14 is					7
	(1) 2	(2) 3	(3) 6		(4) 18	
133.	The IR absorption spectrum band of DCl will be	n of HCl has its strongest b	and at 86	5.5 THz. The	frequency	of the strongest IR
	(1) 86.5 THz	(2) 62.0 THz	(3) 43.	3 THz	(4) 121.1	ГНz
134.	For which hydrogen atom	state, ψ is zero at the nuc	cleus?			
	(1) 2s	(2) 2p	(3) 3p		(4) 3d	
135.	The third lowest microwa absorption frequency for ¹²		for ¹³ C ¹	¹⁶ O is 33056	67 MHz. T	he second lowest
	(1) 220378 MHz	(2) 230542 MHz	(3) 345	5813 MHz	(4) 205032	2 MHz
136.	NMR experiment can not b	_				
	$(1)^{2}H_{1}$	(2) 1 n _o	$(3)^{-3}$ He	e_2	(4) ${}^{4}H_{2}$	
137.	The land distance in D_2 car					
	(1) rovibronic spectroscopy			ribrational sp		
	(3) pure rotational spectros			r spectrosco	py	
138.	The Duhem-Margules equa					
	(1) the solution is strictly id			vapour is id	•	
4.00	(3) the solution and the va	-			-	
139.	Among the following electrocoefficient?	•				the lowest activity
	(1) NaBr	(2) CaCl ₂	(3) KI		(4) HCl	
140.	The ratio of translational pa	2	_			
1 11	(1) 2:1	(2) 2.8:1	(3) 1.4		(4) 4:1	1.
141.	Which one among the follow					onal temperature?
	(1) H2	(2) HCl	(3) HB	sr	(4) HI	

142.	The equation, $d\mu_2 = -\frac{n_1}{n_2}d\mu_1$ is known as
	(1) Duhem-Margules equation

(2) Gibbs-Duhem equation

(3) Gibbs equation

(4) Maxwell's equation

143. Which one is **not** the criterion for spontaneous change?

$$(1) \ dG_{P,T} < O$$

(2) $dA_{v^2} < O$

$$(3)$$
 dS>O

(4) $\sum dS > O$

144. The equation that correlates adsorption with variation of surface tension with concentration

(1) Langmuir's adsorption isotherm

(2) Freundlich adsorption isotherm

(3) Gibbs adsorption isotherm

(4) Hinshelwood adsorption isotherm

Which of the following is **not** the characteristic of an ideal solution? 145.

(1)
$$\overline{\mathbf{H}}_{i} = \overline{\mathbf{H}}_{i}^{0}$$

(2) $\overline{\mathbf{V}}_{i} = \overline{\mathbf{V}}_{i}^{0}$

(3)
$$\overline{G}_i = \overline{G}_i^0 + RT \ln N_i$$

(4) $\overline{S}_i = \overline{S}_i^0 + R \ln N_i$

How many years would be required for the activity of Zn-65 (half life, 245 days) to reduce to 5% of its 146. initial value?

(1) 13.4 years

(2) 2.7 years

(3) 3.6 years

(4) 2.9 years

If the activation energy for $H_2 + I_2 \rightarrow 2HI$ is 167 kJ and enthalpy of the reaction is -8 kJ, what is the 147. activation energy for the decomposition of HI?

(1) 159 kJ

(2) 175 kJ

(3) 167 kJ

(4) 179 kJ

Consider the following mechanism for the thermal decomposition of acetaldehyde 148.

$$CH_3CHO \xrightarrow{k_1} CH_3 + CHO \qquad E_a = 320 \text{ kJ mol}^{-1}$$

$$CH_3CH_3CHO \xrightarrow{k_2} CH_4 + CH_2CHO \quad E_a = 40 \text{ kJ mol}^{-1}$$

$$CH_2CHO \xrightarrow{k_3} CO + CH_3 \qquad E_a = 75 \text{ kJ mol}^{-1}$$

$$CH_3 + CH_3 \xrightarrow{k_4} C_2H_6 \quad E_a = 0$$

The overall rate constant for the formation of CH₄ is given by $k = k_2 \left(\frac{k_1}{k_2} \right)$

The overall activation energy

(1) 435 kJ.mol⁻¹

(2) 320 kJ.mol^{-1}

(3) 0

(4) 200 kJ.mol⁻¹

149. In course of a chemical reaction, its free energy changes as

$$(1) dG = -SdT + Vdp$$

(2)
$$dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$$

(3)
$$dG = -SdT + Vdp + \sum_{i} n_i d\mu_i$$

(4)
$$dG = -SdT - pdV + \sum_{i} {}^{i}\mu_{i}dn_{i}$$

Langmuir adsorption isotherm does not apply when 150.

- (1) adsorption is chemisorption
- (2) adsorption layer is monolayer
- (3) heat of adsorption is independent of surface coverage
- (4) heat of adsorption decreases with surface coverage