

BHU M.Sc. CHEMISTRY ENTRANCE - 2015

Time: 2½ Hours Full Marks: 450

Instructions:

(i) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

(ii) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

The plots of gaseous densities vs temperature and of liquid densities vs temperature for a substance 1. converge at a temperature. The temperature is called

(1) boiling point

(2) Boyle temperature

(3) critical temperature

(4) inversion temperature

The RMS speed of He(g) at 0°C is 1300 m-s⁻¹. The most probable speed of the gas will be 2.

(1) 1300 m-s^{-1}

(2) 866.6 m-s⁻¹

(3) 1592.2 m-s^{-1}

(4) 1061.4 m-s^{-1}

3. The pseudo first order rate constants for the cobalt-catalysed auto-oxidation of toluene in acetic acid at 87°C at different concentrations of Co(III) are

[Co(III)]/M

0.053

0.084

0.118 0.172

 $k/10^{-5}s^{-1}$

1.47

2.93

5.68

11.58

for [toluene] $_0 = 0.5$ M.

The order with respect to [Co(III)] is

(1) 2

(2) 1.5

(3) 1

For the reaction $2AB_2 + ABCA = CABCA + ABCA = CABCA + ABCA + CABCA + CABCA$ 4.

the reaction rate for A_2B_4 formation is

(1) $2k_1[AB_2] - k_{-1}[A_2B_4]$

(2) $(2k_1 - k_{-1})[AB_2]$

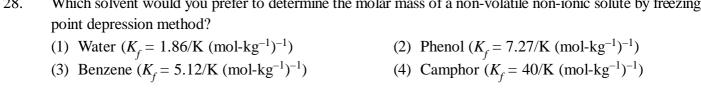
(3) $\frac{2k_1}{k}[AB_2]$

(4) $2k_1[AB_2]^2 - k_{-1}[A_2B_4]$

The enzymolysis of a substrate has a Michaelis constant of $0.035~\text{mol-L}^{-1}$ at 25°C . The maximum rate of 5. the reaction is 1.50×10^{-3} mol-L⁻¹-s⁻¹. What should be the concentration of the substrate for which the reaction rate would be reduced to 0.75×10^{-3} mol-L⁻¹-s⁻¹?

(1) 0.070 mol-L^{-1}

(2) 0.494 mol-L^{-1}


(3) 0.035 mol-L^{-1}

(4) 0.017 mol-L^{-1}

6.				or (A) of Arrhenius equation as	
	(1) A	(2) ln A	$(3) \exp(A)$	$(4) \exp(-A)$	
7.	The mechanism of the rea	ction			
		$H_2O_2(aq) \rightarrow H_2O(l)$	$+ \frac{1}{2} O_2(g)$		
	catalysed by Br ⁻ ions is				
	$H_2O_2(aq) + Br^-(aq)$	$\rightarrow \text{H}_2\text{O}(l) + \text{BrO}^-(\text{aq})$	(slow)		
	$BrO^{-}(aq) + H_2O_2 (aq)$	$\operatorname{aq}) \to \operatorname{H}_2\operatorname{O}(l) + \operatorname{O}_2(g)$	+ Br ⁻ (aq) (fast)		
	The overall order of the r	eaction is			
	(1) 0	(2) 1	(3) 2	(4) 3	
8.	Consider the following me	echanism			
		$A_2 \rightleftharpoons 2A \text{ (fast)}$			
		$A + B \rightarrow P$ (slow)			
	The overall order of the r	reaction is			
	(1) 0.5	(2) 1	(3) 1.5	(4) 2	
9.	The plot of the data on pobeen found linear. What is			n of CO on charcoal at 273K has	
	(1) Langmuir isotherm		(2) Freundlich is	sotherm	
	(3) BET isotherm		(4) Temkin isoth	nerm	
10.	A crystal system characte	erised by $a \neq b \neq c$ and	$\alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$	is	
	(1) triclinic	(2) monoclinic	(3) rhombic	(4) trigonal	
11.	The Miller indices of the	planes with intercepts 4	a , $6b$ and ∞ where	cas b and c are the unit cell edge	
	lengths are				
	(1) (3, 2, 0)	(2) (2, 3, 0)	(3) (0, 2, 3)	$(4) (4, 6, \infty)$	
12.	A powder diffraction pho	tograph from tungsten s		lex as (110), (200), (211), (220)	
	(310), (222), (321), (400), The symmetry of the unit cell is				
	(1) simple cubic	GANEEN EN	(2) body-centre	d cubic	
	(3) face-centred cubic		(4) edge-centre	d cubic	
13.	At the critical solution ter	nperature of phenol-wate	er system, the degree	of freedom is	
	(1) 0	(2) 1	(3) 2	(4) 3	
14.	The SI unit of radiation e	energy is grey whereas th	e c.g.s. unit is rad. 1	grey is equal to	
	(1) 1 rad	(2) 10 rad	(3) 100 rad	(4) 1000 rad	
15.	The molar conductance o of the applied potential. T	-		antially with increase in frequency	
	(1) frictional forces		(2) electrophore	etic effect	
	(3) relation effect		(4) electrophore	etic and asymmetry effects	
16.	Which of the following c	ases for a perfect gas ha	s $q = 0$?		
	(1) Isothermal isobaric ex	xpansion	(2) Reversible is	sothermal expansion	
	(3) Isobaric adiabatic exp	pansion	(4) Isothermal i	sobaric irreversible compression	

		<u> </u>
17.	For the process $H_2O(s) \rightarrow H_2O(l)$ in an ice-water	bath at 0°C, which of the following statements is true?
	(1) $T\Delta S > \Delta H$	(2) $\Delta H > T \Delta S^1$
	$(3) \Delta H = T \Delta S^1$	$(4) \Delta G < 0$
18.	One of the Gibbs equations	
	$dG = -SdT + VdP + \Sigma$	$\Sigma \mu_i dn_j$
	does not apply when the system	
	(1) is in thermal equilibrium	(2) is in mechanical equilibrium
	(3) involves P-V work only	(4) consists of any number of phases
19.	A real solution is one which	
	(1) obeys Raoult's law	(2) obeys Henry's law
	(3) does not obey Henry's law	(4) does not obey Raoult's law
20.	The molar conductivity of strong electrolyte decrea	ases with concentration $1c$ when c is sufficient low as
	(1) linearly with c	(2) linearly with $c^{1/2}$
	(3) linearly with log <i>c</i>	(4) exponentially with c
21.	Under what condition the equilibrium constant (K)	of a reaction become independent of temperature?
	(1) $\Delta G^{\circ} < 0$	(2) $\Delta H^{\circ} < 0$
	(3) $\Delta H^{\circ} > 0$	(4) $\Delta H^{\circ} = 0$
22.	The oxidation potential of $M \mid M^{2+}$ is +0.76V and to	the reduction potential of $A^+ \mid A$ is +0.25V. The e.m.f.
	of the cell $M \mid M^{2+} \mid \mid A^+ \mid A$ is	
	(1) 1.01 V	(2) -0.51 V
	(3) 0.51 V	(4) -1.01 V
23.	_	olecule in a 100 cm ³ vessel at 298 K is 2.77×10^{26} . The
	q for the D_2 molecule under the same condition w	
		$\begin{array}{c} (2) \ \ 3.29 \times 10^{26} \\ (4) \ \ 7.83 \times 10^{26} \end{array}$
24	(3) 21.25×10^{26}	ecule at 27°C is 19.6. What would be its q^R at 327°C?
24.		(3) 39.2 (4) 55.3
25.	(1) 19.6 (2) 27.7 Which of the following molecules does not show a	
23.	(1) HCl (2) trans-CH ₂ Cl ₂	
26.	2 2	R spectrometer operating at 11.7 tesla. What magnetic
20.	field would be necessary to observe the resonance	
	(1) 11.7 tesla (2) 2.9 tesla	(3) 23.4 tesla (4) 46.8 tesla
27.	The Gibbs-Duhem equation is	
	(1) $\sum_{n} dn = 0$ (2) $\sum_{n} d\pi \neq 0$	(3) $\sum n du = 0$ (4) $\sum n du \neq 0$
	$(1) \sum_{i} \mu_{i} dn_{i} = 0 \qquad (2) \sum_{i} \mu_{i} d\pi_{i} \neq 0$	(3) $\sum_{i} n_i d\mu_i = 0 (4) \sum_{i} n_i d\mu_i \neq 0$
28.	Which solvent would you prefer to determine the monoint depression method?	olar mass of a non-volatile non-ionic solute by freezing

(2) Phenol $(K_f = 7.27/\text{K (mol-kg}^{-1})^{-1})$ (4) Camphor $(K_f = 40/\text{K (mol-kg}^{-1})^{-1})$

29.	The IR spectrum	of H ₂ O shows 3 bands.	How many ban	ds do you pre	edict for CO ₂ ?	
	(1) 1	(2) 2	(3)	3	(4) 4	
30.	The minimum ene	ergy for which of the follo	owing systems is	zero?		
	(1) H-atom		(2)	A vibrating di	iatomic molecule	
	(3) A rotating dia		` ´		confined to a 3D-box	
31.	1,2	years. If 48.0 mg of ³ H is de would remain after 49		nuclear powe	er plant during an accident, wh	at
	(1) 6.0 mg	(2) 3.0 mg	(3)	12.0 mg	(4) 24.0 mg	
32.	n = 2 state by a liquid the $n = 1$ to $n = 1$	ght of frequency v. If the 2 transition becomes	length of the box	x is doubled, t	L can be excited from $n = 1$ the frequency needed to produce	
	(1) $v/4$	(2) $v/2$	(3)	2v	(4) 4v	
33.					The light frequency causing the same transition	
	(1) 2 <i>v</i>	$(2) \sqrt{2}v$	(3)	v / 2	(4) $v/\sqrt{2}$	
34.	The radial distribu	ution function for 1s state	e , $4\pi r^2 \psi_{1s}^2$, indic	cates that		
		bable value of the distance				
	(2) the average value of <i>r</i> is zero					
		value of r is greater than t	the most probab	ole value		
	• •	value of r is less than the	_			
35.	•	Which one of the following statements about H_2^+ is false?				
	(1) The non-degenerate LCAO-MOs (without spin) must be either symmetric or antisymmetric					
	(2) The lowest MO (without spin) of the molecule is antisymmetric for inversion					
	(3) The MOs tra	nsform into AOs of the h	elium ion as the	two nuclei ar	e fused together	
	(4) The ground s	tate has a multiplicity of t	two		1	
36.	Which of the follo	owing functions are 'well l	behaved' quantu	ım mechanical	ly?	
	$(1) \exp(-ax^2)$	OAIILLI	(2)	$\exp(-ax)$		
	(3) x^2	www.care	eerende	avour.i	n	
37.	Which of the follo	owing is not an eigenfunc	tion of $\frac{d^2}{dx^2}$ ope	erator?		
	(1) $\exp(ax)$		(2)	$\exp(ax^2)$		
	(3) ax + b		(4)	$\cos x$		
38.	The operator $-\frac{h}{2}$	$\frac{d^2}{dx^2} \frac{d^2}{dx^2}$ represents				
	(1) linear moment	tum	(2)	angular mome	entum	
	(3) total energy		(4)	kinetic energy	y	
39.	The electrophilic a	aromatic substitution proc	ceeds through an	intermediate		
	(1) phenyl cation		(2)	σ complex		
	(3) benzene anion	n	(4)	benzyne		

- 40. Optically active 2-octanol rapidly loses its optical activity when exposed to the following
 - (1) Dilute acid

(2) Dilute base

(3) Light

- (4) Humidity
- 41. The relative rates of nitration of $R - C_6H_5$, where $R = CH_3$, NO_2 , OH and Cl, is
 - (1) $CH_3 > OH > NO_2 > Cl$

(2) $CH_3 > OH > Cl > NO_2$

(3) $OH > CH_3 > NO_2 > Cl$

- (4) $OH > CH_2 > Cl > NO_2$
- 42. Which of the following statements is not true for the E2 reactions?
 - (1) Bimolecular reaction

(2) Reactivity order is RI > RBr > RCl

(3) Rearrangement occurs

- (4) Reactivity order of RX is $3^{\circ} > 2^{\circ} > 1^{\circ}$
- 43. List the following compounds in the correct order of decreasing acidity

$$CH_2 = CH_2$$

$$CH_3CH_3$$

 $CH_3CH = O$

$$HC = CH$$

(A)

(C)

(1) D > C > A > B

- (2) C > D > A > B

(3) D > A > C > B

- (4) C > A > D > B
- 44. Which of the following carbocations is the most stable?

- Ziegler-Natta catalyst is 45.
 - (1) Et₂O.BF₃
 - (3) Na-naphthalene

- (2) Et₃Al.TiCl₄
- (4) Pd/CaCO₃/quinoline
- Pyridine undergoes electrophilic substitution with fuming H₂SO₄ at elevated temperature to give 46.
 - (1) pyridine-3-sulphonic acid

(2) pyridine-2-sulphonic acid

(3) pyridine-4-sulphonic acid

- (4) All of the above
- 47. Which of the following elimination reactions will give 1-butene as the major product?

- Aldehydes and ketones can be converted into 1, 2-dicarbonyl compounds by reaction with 48.
 - (1) periodic acid

(2) lead tetracetate

(3) peracetic acid

- (4) selenium dioxide
- 49. Which of the following haloalkanes will undergo hydrolysis most readily?
 - (1) (CH₃)₃CBr

(2) (CH₃)₃CCl

 $(3) (CH_3)_3 CF$

 $(4) (CH_3)_3 Cl$

50. The reactant, M in the reaction below

$$\begin{array}{c} \text{OCH}_3\\ \text{M} & \\ \hline \text{liquid NH}_3 \end{array} \begin{array}{c} \text{OCH}_3\\ \text{NH}_2 \end{array}$$

can be

(1) o-bromoanisole

(2) *m*-bromoanisole

(3) either of *o*- or *m*-bromoanisole

- (4) None of the above
- 51. The product formed in the following electrophilic aromatic substitution reaction is

- (4) None of the above
- 52. Which of the following compounds absorbs UV radiation?
 - (1) Ethanol

(2) Butylamine

(3) Acetone

- (4) Chlorohexane
- 53. Benzaldehyde may be prepared by any of the following methods. Which one of these is called Stephen's method?

(1)
$$C_6H_5CN \xrightarrow{SnCl_2} H_2O \xrightarrow{H_2O}$$

(2)
$$C_6H_6 + CO + HCI$$

(3) $C_6H_5CHCl_2 + H_2O$

(4) $C_6H_5CH_2Cl + (CH_2)_6N_4$

WWW.careerendeavour.in

54. The reagent used in the transformation

$$\begin{array}{c|c} \mathsf{CH_2COCH_3} & & \mathsf{POCH_2COCH_3} \\ \mathsf{O} & & \mathsf{POCH_2COCH_3} \\ \mathsf{O} & & \mathsf{POCH_3COCH_3} \\ \end{array}$$

is

(1) $LiAlH_4$

(2) NaBH₄

(3) Zn(Hg)/HCl

(4) H_2NNH_2 , OH^{Θ}

55.	Which of the following sec Grignard reagent?	condary alcohols can be p	epared from th	ne reaction	of methyl formate with exces
	(1) CH ₃ CH ₂ CHCH ₃		(2) CH ₃ C	:HCH₃	
	OH		` ′	Н	
	(3) CH ₃ CHCH ₂ CH ₂ CH ₃		(4) CH ₃ C	HC ₆ H ₅	
	OH			ЭН	
56.	Consider the following sta	tements about conformat	onal isomers:		
	(A) They are interconverted by rotation about single bond				
	(B) The energy barrier separating them is less than 15 kcal/mole				
	(C) They are best represented by means of Fischer projection formulae				
	Of these statements:				
	(1) All (A), (B) and (C)	are correct	(2) Only	(B) and (C	c) are correct
	(3) Only (A) and (C) are	e correct	(4) Only	(A) and (B	3) are correct
57.	Which of the following is	not the product of ozono	lysis of citral?		
	(1) Glyoxal		(2) Aceto	one	
	(3) Acetaldehyde		(4) Laevu	ılaldehyde	
58.	Arrange the following thr	ee chlorides in decreasing	order of $S_N 1$	reactivity	
	CH ₃ CH ₂ CH ₂ CI	H ₂ C=CHCHCH ₃	CH ₃ CH ₂ C	HCH ₃	
	A	ĊI B	CC	ı	
	(1) A > B > C		(2) $B > 0$	C > A	
	(3) $B > A > C$		(4) $C > 1$	B > A	
59.	Arrange the following car	banions in order of their	lecreasing stat	oility	
	/\	⊖	Θ		Θ
	Ö	(C ₆ H ₅) ₃ Č∶	(CH ₃) ₃ Č:		ĊH₂
	A	CAREER EN	DEA _C (JURJ	D
	Answer codes:	vww.careere	ndeavo	nurin	
		v vv vv.GarGGrG			
	(3) $A > B > D > C$		(4) $B > A$	A > C > D	
60.	The α - and β -forms of	D-glucopyranose are cal	ed		
	(1) anomers		(2) enanti	omers	
	(3) epimers		(4) diaste	reomers	
61.	The methyl D-glucoside is	s made by treating D-glud	ose with the fo	ollowing	
	(1) CH ₃ OH, HCl		(2) aqueo	ous CH ₃ OF	I
	(3) $(CH_3)_2SO_4$, NaOH		(4) CH ₃ C	OCH ₃ , LiAl	H_4
62.	Select among the following	g carbohydrates whose co	nplete hydroly	sis give D(-	+) glucose as the only produc
	(A) Dextrin	(B) Starch	(C) Sucro	se ((D) Cellulose
	The correct answer code	is			
	(1) (A), (B), (C)		(2) (B), (C), (D)	

(3) (A), (C), (D)

(4) (A), (B), (D)

						ت ت
63.	How many stereocentres are	e present in the small,	naturally	occurring pro	tein glycylalanylalar	nine?
	(1) One	(2) Two	(3)	Three	(4) Zero	
64.	The reagent used in Edman	method of N-termin	al analysis	of peptides i	S	
	(1) phenyl isothiocyanate		(2)	2, 4-dichloro	fluorobenzene	
	(3) 2, 4-dinitrofluorobenzer	ne	(4)	benzyl chloro	formate	
65.	Select the reagent required	to bring about the foll	lowing tra	nsformation		
	$(CH_3)_2C = CH - C - CH_3 - CH_3$? ► (CH ₃) ₂ C=CH	H-COOH			
	(1) KMnO ₄ , NaOH		(2)	$K_2Cr_2O_7 / H$	H_2SO_4	
	(3) $\operatorname{Cl}_2 / \operatorname{OH}^-$, then H^+			<i>m</i> -chloroperb		
66.	Which one of the following	would clearly prove	the config	guration of <i>cis</i>	-3-hexene from <i>tran</i>	ns-3-hexene
	(1) Boiling point		(2)	Rate of hydro	ogenation	
	(3) Dipole moment		(4)	Infrared spec	trum	
67.	Naphthalene undergoes nit	ration with a mixture	of conc.	HNO_3 and H_2	SO ₄ at 50°C to give	e mainly
	(1) 1-nitronaphthalene		(2)	2-nitronaphth	alene	
	(3) 1, 3-dinitronaphthalene		(4)	1, 4-dinitrona	aphthalene	
68.	The most convenient spectro	oscopic technique to e	stablish the	e presence of i	nter-molecular hydro	ogen bonding
	in hydroxy compounds is					
	(1) UV		(2)	IR		
	(3) NMR		(4)	None of the	above	
69.	The following reaction proc	eeds through				
	CH ₃ Cl ₂ ?	CH ₂ CI				
	(1) Nucleophilic substitution	n	(2)	Electrophilic	substitution	
	(3) Free radical substitution	1	(4)	Rearrangeme	nt	
70.	Which one of the following	aromatic substitution	reactions	is reversible?		
	(1) Nitration	MANLEN		Sulphonation		
	(3) Halogenation Allylic bromination is carrie	MANA OOROOR	(4)	Friedel-Craft	s acylation	
71.	Allylic bromination is carrie	d out by	ende	avour.		
	(1) HBr, H_2O_2		(2)	HOBr		
	(3) Br_2 , CS_2		(4)	NBS		
72.	Which one of the following	is the final product 2	Z in the rea	action sequen	ce given below?	
	Me ₂ C = O + HCN	→ X — H ₃ O ⁺ → Y	Conc. H ₂	2 ^{SO} 4 ► Z		
	(1) $CH_2 = C(CH_3)COOH$		(2)	$(CH_3)_2C(OH_3)_2$	I)COOH	
	(3) HOCH ₂ CH(CH ₃)COO	Н	(4)	$CH_3CH = C$	НСООН	

		9			
73.	Which one of the following reactions is correctly sho	own?			
	(1) ROH + NaOH \longrightarrow RONa + H_2O	(2) $ROH + NaHCO_3 \longrightarrow RONa + H_2CO_3$			
	(3) $2ROH + Na_2CO_3 \longrightarrow 2RONa + H_2CO_3$	(4) $PhOH + NaOH \longrightarrow PhONa + H_2O$			
74.	Identify the chiral compound that is oxidized with a	=			
		4			
	(1)	(2)			
	(3)	(4)			
75.	Natural rubber is a polymer made up of the following	ng monomer units			
	(1) Butadiene	(2) Neoprene			
	(3) Isoprene	(4) Chloroprene			
76.	Which of the following compounds can be used as	a solvent in Friedel-Crafts reaction?			
	(1) Acetic anhydride	(2) Nitrobenzene			
	(3) Anisole	(4) Toluene			
77.	Oxygen may be prepared by heating potassium chlorate. What is the other product?				
	(1) Potassium oxide	(2) Potassium chloride			
	(3) Potassium hypochlorite	(4) Potassium chlorite			
78.	From each pair given below, identify the ion which is larger in size:				
	$[\text{Co}^{2+},\text{Co}^{3+}][\text{Fe}^{2+},\text{Zn}^{2+}][\text{Na}^+,\text{F}^-][\text{O}^{2-},\text{S}^{2-}]$				
	(1) Co^{2+} , Zn^{2+} , F^- , S^{2-}	(2) Co^{3+} , Fe^{2+} , Na^+ , S^{2-}			
	(3) Co ²⁺ , Fe ²⁺ , F ⁻ , S ²⁻	(4) Co^{3+} , Zn^{2+} , Na^+ , O^{2-}			
79.	How many unpaired electrons are there in an atom	of silver in its ground state?			
	(1) 0 (2) 1	(3) 2 (4) 4			
80.	How many moles of P ₄ O ₁₀ will react with one mole	e of water?			
	(1) 2 moles (2) 6 moles	(3) 1/3 mole (4) 1/6 mole			
81.	If 22g of N ₂ O ₅ reacts with 10g of water to produce 2	2g of nitric acid, what is the percentage yield of nitric			
	acid? www.careerer	ndeavour.in			
	(1) 32% (2) 69%	(3) 87% (4) 100%			
82.	10ml of 0.10N sodium hydroxide is added to 20ml 0.10N sulphuric acid and the resultant solution is titrated				
	against 0.10N sodium hydroxide. What will be the	titre value at the end point?			
	(1) 5 ml (2) 10 ml	(3) 20 ml (4) 30 ml			
83.	An aqueous solution of a substance gives a white pr	recipitate when a few drops of sodium hydroxide are			
	added. The precipitate dissolves when excess of so	dium hydroxide is added. The substance may be			
	(1) aluminium sulphate	(2) silver nitrate			
	(3) cadmium chloride	(4) mercuric chloride			
84.	Which reagent may be used to precipitate barium fro	om aqueous solutions?			

(1) Hydrochloric acid

(3) Silver nitrate

(2) Sulphuric acid

(4) Ammonium chloride

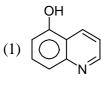
85.	A non-stoichiometric Ag ²⁺ ?	c oxide of silver has compositi	on Ag _{1.8} O. What perce	entage of Ag is present in the form
	(1) 11%	(2) 14%	(3) 20%	(4) 25%
86.	A sample of water of Ca?	contains 200 p.p.m. of Ca ²⁺ ir	it. What is the molali	ty of the solution with respect to
	(1) 0.2 m	(2) 2 m	(3) 5×10^{-3} m	(4) 0.05 m
87.	Which of the follow	ing is not a crystalline substar	nce?	
	(1) Glass	(2) Quartz	(3) Chalk	(4) Diamond
88.	What is the charge	(n) on the silicate ion $Si_2O_7^{n}$?	
	(1) -2	(2) -4	(3) -6	(4) -7
89.	Silver is extracted for role of NaCN is to	rom the crude metal by leachi	ing with a solution of l	NaCN in the presence of air. The
	(1) oxidize Ag to A	g^+	(2) form the cor	mplex $[Ag(CN)_4]^{3-}$
	(3) form the comple	$\exp\left[\operatorname{Ag(CN)}_{4}\right]^{2-}$	(4) form the cor	mplex [Ag(CN) ₂]
90.	CoCl ₄ ²⁻ and Co(H ₂	O) ₆ ²⁺ have different colours.		-
	• -	different oxidation states		
	(2) they have differen	ent coordination geometries		
	(3) they have differ	ent number of unpaired electr	ons	
	(4) they have Co in	different oxidation states and	l bound to different lig	gands
91.	CuI ₂ is unstable, bed	cause it readily decomposes t	0	
	(1) Cu and I ⁻		(2) Cu and I ₂	
	(3) CuI and I_2		(4) CuI and I^-	
92.	Which one among the solutions?	he chlorides, ZnCl ₂ , HgCl ₂ , B	aCl ₂ , AlCl ₃ is dissocia	ted to the least extent in aqueous
	(1) ZnCl ₂	(2) HgCl ₂	(3) BaCl ₂	(4) AlCl ₃
93.	Which one among the	he given ions, has the highest	polarizing power?	
		(2) Ca^{2+}	(3) Mg^{2+}	(4) Al^{3+}
94.	Which compound c	an act as a Lewis acid as we	ell as a Lewis base?	
	(1) H ₂ O	(2) $SnCl_2$	(3) NH ₃	(4) BF ₃
95.		ch one, among the given form	-, ,, , , , , , , , , , , , , , , , , ,	opted by several oxides as well as sents a known fluoride having the
	(1) CaTiF ₃		(3) CaTiF ₅	(4) CaMgF ₂
96.	5	aqueous solutions of Cu ²⁺ , th	2	2
	(1) CO	(2) Cl ⁻	(3) I ₂	(4) I ⁻
97.	• •	ad to linkage isomers?	2	、 ,
	(1) Azide	(2) Cyanate	(3) Oxalate	(4) Nitrate
98.	• •	• • •		rmal oxidation number of B in this
	(1) 2.5	(2) 3	(3) 3.5	(4) 4
	(-)	(-) 5	(5) 5.5	(') '

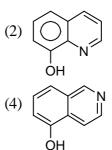
- 99. Two isomers are obtained for Pt(NH₃)₂Cl₂, while only one isomer is obtained for Ni(NH₃)₂Cl₂. This is because (1) the two complexes differ in the oxidation state of the metal (2) the two complexes differ in the oxidation state of the metal as well as coordination number (3) the two complexes differ in their coordination number (4) the two complexes differ in their coordination geometry 100. Consider the following reaction: $[Co(NH_3)_4Cl_2]^+ + H_2O \rightarrow [Co(NH_3)_4(H_2O)Cl]^{2+} + Cl^-$ The above reaction involves (1) substitution (2) substitution and reduction (3) oxidation (4) substitution and oxidation 101. Identify the acids in the following two reactions: $NOF + ClF_3 = NO + ClF_4^ XeO_3 + OH^- = HXeO_4^-$ (1) ClF_3 and XeO_3 (2) ClF₃ and OH⁻ (3) NOF and OH-(4) NOF and XeO₃ What are the formal oxidation states of the iron atoms labeled (A) and (B) in the compound Fe₄ (A) 102. $[Fe^{(B)}(CN)_{6}]_{3}$? (1) $Fe^{(A)}$, 2 + and $Fe^{(B)}$, 3+ (2) $Fe^{(A)}$, 2 + and $Fe^{(B)}$, 4+ (3) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 3+ (4) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 2+ The magnetic moment of $Co(H_2O)_6^{3+}$ is zero and that of $Mn(CN)_6^{3-}$ is 2.9 BM. From this is may be 103. concluded that (1) both ions are high spin (2) both ions are low spin (3) $Co(H_2O)_6^{3+}$ is low spin, $Mn(CN)_6^{3-}$ is high spin (4) $Co(H_2O)_6^{3+}$ is diamagnetic, $Mn(CN)_6^{3-}$ is high spin Which among the following compounds / ions are diamagnetic? 104. CuCl₂²⁻; Cu(SCN); CoCl₄²⁻; Ni(CO)₄; PdCl₄²⁻ (1) $CoCl_{4}^{2-}$ and $PdCl_{4}^{2-}$ (2) CuCl₆⁴, Cu(SCN) and Ni(CO)₄ (4) Cu(SCN), Ni(CO)₄ and PdCl₄²⁻ (3) Cu(SCN) and Ni(CO) Which one is an example of a 'sandwich' compound? 105. $(2) \operatorname{Cr(CO)}_{6}$ (1) $Cr(C_6H_6)_2$ (4) $[Pt(NH_3)_2][PtCl_4]$ (3) Cr₂(CH₃COO)₂ 106. Which one, among the listed ions, will have the highest magnetic moment? (1) $Cu(H_2O)_6^{2+}$ (2) $Ni(NH_3)_6^{2+}$ (4) $Ru(NH_3)_6^{2+}$ (3) MnCl₄²⁻ Which of the following shows the correct relationship between the atomic radius (r) of Cu, Ag and Au? 107.
- Which of the following shows the correct relationship between the atomic radius (*r*) of Cu, A

 (1) ^rCu < ^rAg < ^rAu

 (2) ^rCu << ^rAg < ^rAu
 - (3) ${}^{r}Cu < {}^{r}Ag << {}^{r}Au$ (2) ${}^{r}Cu > {}^{r}Ag > {}^{r}Au$ (4) ${}^{r}Cu > {}^{r}Ag > {}^{r}Au$
- 108. Which of the following molecules / ions have planar structures?

 (i) NH_3 (ii) SO_4^{2-} (iii) CO_3^{2-} (iv) BF_3 (1) All four (2) (ii) and (iii) (3) (iii) and (iv) (4) Only (iv)


109.	Which of the following are paramagne	tic compounds?				
	(i) Oxygen	(ii) Copper sulph	nate			
	(iii) Carbon monoxide	(iv) Nitric oxide				
	(v) Ozone					
	(1) (i), (ii), (iii) (2) (i), (ii), (iv) (3) (ii), (iii), (v)	(4) (i), (iv), (v)			
110.	Complete the sentence : An octahedra	al complex, MA_4B_2				
	(1) will have two constitutional isome	· —	stereoisomers			
	(3) cannot show isomerism	(4) will be optical	ally active			
111.	Which two of the following molecules	/ ions have planar structures?				
	(i) XeF ₄ (ii) ClO ₂	(iii) PtCl ₄ ²⁻	(iv) MnO_4^-			
	(1) (i) and (iii) (2) (i) and	nd (ii) (3) (ii) and (iii)	(4) (ii) and (iv)			
112.	In qualitative analysis, Ag is detected in This is because	the first group, while Pb is detecte	d in both first and second groups			
	(1) AgCl is much more soluble than	PbCl.				
	(2) AgCl is much less soluble than P	<u> </u>				
	(3) the solubilities of the chlorides ar		ilv seen due to its black colour			
	(4) AgS is soluble, but PbS is insolul					
113.	Three examples of molecules / ions ha		n as			
	(1) CO ₂ , NCS ⁻ and NO ₂ ⁺	(2) CO ₂ , NCS ⁻				
	(3) NO_2 , N_3^- and NCS^-	(4) ClO ₂ , CO ₂ a	_			
114.	The average of 64 results is how man		<u>-</u>			
	(1) 2 (2) 4	(3) 8	(4) 16			
115.	Which of the following statements is t	rue?				
	(1) The variance is the square root of the standard deviation					
	(2) Precise values are always accurat					
	(3) The numbers 0.02040 contains on	ly four significant figures				
	(4) Two of the above are true		4			
116.	Titrator A obtains a mean value of 12	.96% and a standard deviation of	0.05 for the purity of a sample			
	Titrator B obtains corresponding values of 13.12% and 0.08. The true percent purity is 13.08. Compared					
	to titrator B, titrator A is (1) less accurate but more precise	areerendeavour.i	n			
	(3) less accurate and less precise	` '	te but less precise			
117.	Which of the following titrations (0.10)		• •			
	(1) Benzoic acid and NaOH	(2) Formic acid				
	(3) Pyridine with HCl	` '	acetic acid with NaOH			
118.	Which is the strongest conjugate base					
	(1) OAc^- (2) F^-	$(3) NO_2^-$	(4) OCl ⁻			
119.	Which of these statements is true?					
	(1) An aprotic solvent has acidic proj					
	(2) The titration reaction is more com	· · ·				
	(3) Dissociation into ions is necessary					
	(4) A low dielectric constant is desirable for amphiprotic solvents					



- A precipitate of Fe(OH)₃ is contaminated with Mg(OH)₂. The best way to get rid of the impurity is 120. (2) digestion (1) washing (3) ignition (4) reprecipitation 121. Line spectra are emitted by (1) hot solids (2) excited polyatomic molecules (4) excited atoms and monoatomic ions (3) molecules in the ground electronic state 122. The hydrogen or deuterium discharge tube can be used as a source of continuous ultraviolet radiation for spectrophotometers because of (1) the characteristics of chopper-modulated radiation (2) pressure broadening of hydrogen or deuterium emission lines (3) the great sensitivity of photomultiplier tubes (4) the narrow band pass of modern grating monochromators In chromatography, a substance for which the distribution coefficient, k is zero may be used to estimate 123. (1) the volume within the column occupied by the packing material (2) the total volume of the column (3) the volume within the pores of the packing material (4) the volume within the column available in the mobile phase 124. The separation factor, S, in chromatography depends upon (1) the length of the column (2) the square root of the length of the column (3) the natures of the stationary liquid phase (4) the number of theoretical plates in the column A neutral molecule such as ethanol or sugar which has found its way into the pores of a typical anion-125. exchange resin can be eliminated (1) only by replacement with a cation (2) only by replacement with an anion (3) only if replaced by another organic molecule on a one-for-one exchange basis (4) by flushing out with water Which of the following statements is false in normal phase adsorption? 126. (1) The more polar a compound, the more strongly it will be adsorbed from a solution (2) A high molecular weight favours adsorption, other factors being equal (3) The more polar the solvent, the stronger the adsorption of the solute (4) The adsorption isotherm is usually non-linear The best measure of the quantity of a solute in liquid chromatography is 127. (1) the height of the elution band (2) the area of the elution band (3) baseline width of the elution band (4) the retention volume 128. Which of the following would be the fastest way to decide which adsorbent and what solvent system to use for a large-scale chromatographic separation of an organic reaction product from materials found in side reactions? (1) Paper chromatography (2) Affinity chromatography (3) TLC
 - (4) Adsorption chromatography with gradient elution
- 129. To deionize tap water by ion exchange for laboratory use, the best approach employs
 - (1) a column containing a strong acid cation exchanger in the hydrogen form
 - (2) a column containing a strong base cation exchanger in the hydrogen form
 - (3) a mixed bed column containing a strong acid cation exchanger in the solution form and a strong-base anion exchanger in the chloride form
 - (4) a mixed bed column containing a strong acid cation exchanger in the hydrogen form and a strong-base anion exchanger in the hydroxyl form

			17		
130.	Which of the following is used in archaeological stud	lies?			
	(1) Carbon (2) Uranium	(3)	Radium (4) Phosphorus		
131.	Radioactive iodine is being used to diagnose the disc	ease o	f		
	(1) bones (2) blood cancer	(3)	kidneys (4) thyroid		
132.	The half-life period of a radioactive material can be	deterr	nined with the help of		
	(1) Wilson Cloud Chamber	(2)	Geiger-Muller Counter		
	(3) Mass specrometer	(4)	All of the above		
133.	Graphite is used in nuclear reactors				
	(1) as a lubricant	(2)	as a fuel		
	(3) for lining the inside of the reactor as an insulator	r (4)	for reducing the velocity of neutrons		
134.	Pure water does not conduct electricity because of				
	(1) has low boiling point	(2)	is almost unionised		
	(3) is neutral	(4)	is readily decomposed		
135.	The molar conductivity of a strong electrolyte				
	(1) increases on dilution	(2)	does not change considerably on dilution		
	(3) decreases on dilution	(4)	depends on density		
136.	Electrostatic precipitators are used as pollution control device for the separation of				
	(1) SO ₂	(2)	NO_x		
	(3) hydrocarbons	(4)	suspended particulate matter		
137.	Which of the following is responsible for ozone layer depletion?				
	(1) Ozone	(2)	Aerosol		
	(3) Chlorofluorocarbons (CFC)	(4)	Smog		
138.	Which of the following is a non-biodegradable organic water pollutant?				
	(1) Proteins	(2)	Fats		
	(3) Carbohydrates	(4)	Pesticides		
139.	Which of the following is very effective for isolating, se	parati	ng and identifying small quantities of substances?		
	(1) Potentiometry	(2)	Chromatography		
	(3) Solvent extraction GAREER EN	(4)	Conducotmetry		
140.	Greenhouse effect causes		·		
	(1) rise in temperature of the earth are ere	10(2)	continuous rainfall		
	(3) lowering in temperature of the earth	(4)	continuous snowing of the earth		
141.	Which of the following is the correct structure of ox	ine?			
	OH				

142.	One mole of potassium bromate in bromate-bromide	reaction produces
	(1) one mole Br ₂	(2) two moles Br ₂
	(3) three moles Br ₂	(4) four moles Br ₂
143.	Phenolphthalein is used as an indicator when transition	on pH is in the range of
	(1) 1–4	(2) 4–6
	(3) 8–10	(4) 10–12
144.	Gases responsible for acid rains are	
	(1) hydrocarbon and CO	(2) NO_x and SO_x
	(3) CO_x and NO_x	(4) CO and CO ₂
145.	Which of the following is the most toxic?	
	(1) CH_3Hg^+	(2) HgCl ₂
	(3) Hg2Cl2	(4) Hg metal
146.	How many moles of benzoic acid (122.1 g/mol) are	contained in 2.00 g of pure benzoic acid?
	(1) 0.164 mol	(2) 0.008 mol
	(3) 0.082 mol	(4) 0.0164 mol
147.	How many potential sites are there in an EDTA mole	cule for bonding a metal ion?
	(1) Four	(2) Three
	(3) Six	(4) Two
148.	Water hardness is determined by EDTA titration afte	r the sample is buffered to pH
	(1) 4	(2) 2
	(3) 6	(4) 10
149.	What minimum distribution coefficient is needed to p	ermit removal of 99% of a solute from 50.0 mL of
	water with two 25.0 mL extractions with toluene?	
	(1) 18.0	(2) 09.0
	(3) 27.0	(4) 36.0
150.	The distribution coefficient for iodine between an org	
	remaining in the aqueous layer of the extraction of 50.0	mL of 1.00×10^{-3} M I ₂ with 50.0 mL of the organic
	solvent is GAREER END	EAVUUKJ
	(1) 1.16×10^{-6}	(2) 5.28×10^{-7}
	(3) 5.29×10^{-10} www.careeren	deavour.in