

D.U. M.Sc. CHEMISTRY ENTRANCE - 2016 (Set - A)

Time: 2 Hours M. Marks: 270

Instructions:

This test booklet contains 90 Multiple Choice Questions. (i)

Each correct answer will be given 3 marks, and for each incorrect answer 1 mark will be deducted. (ii)

1	Which of the	following is	the correct	order of in	oreasing a	cidity segue	nce?
1.	WINCH OF THE	TOHOWHIE IS	s the correct	oraer or ii	icieasing a	Clarry Seque	iice :

(a) HI < HBr < HCl < HF

(b) HI < HCl < HBr < HF

(c) HF < HCl < HBr < HI

(d) $HF \approx HBr < HCl < HI$

- Which of the following statement is correct? 2.
 - (a) only one bond length is observed in both PF₅ and SF₆
 - (b) two different bond lengths are observed in both PF₅ and SF₆
 - (c) only the equatorial bond lengths are uniform in PF₅ and the axial bond lengths in SF₆
 - (d) two different bond lengths are observed in PF₅ and only one bond length in SF₆
- When ²³₁₁Na nuclide is bombarded with alpha particles the resultant products will be 3.

(a) ${}_{12}^{24}$ Mg and ${}_{1}^{2}$ H

(b) ${}_{12}^{26}$ Mg and ${}_{1}^{1}$ H (c) ${}_{11}^{26}$ Mg and ${}_{0}^{1}$ n (d) ${}_{12}^{25}$ Na and ${}_{1}^{1}$ He

- 4. The magnetic moments of the lanthanoid compounds arise from
 - (a) spin-only angular momentum
 - (b) only from orbital angular momentum
 - (c) both from spin and orbital angular momentum
 - (d) all of the above
- 5. Which is the best way of identifying a given colourless liquid to be water or not?
 - (a) by tasting
 - (b) by adding methyl orange
 - (c) by smelling
 - (d) by adding a pinch of copper sulphate
- The addition of KI and CuSO₄ gives 6.
 - (a) CuI_2 and K_2SO_4

(b) Cu_2I_2 and K_2SO_4

(c) K_2SO_4 , CuI_2 and I_2

(d) K_2SO_4 , Cu_2I_2 and I_2

- 7. In diborane,
 - (a) there exists a direct bond between boron and boron
 - (b) all the atoms are in one plane
 - (c) the number of electrons in B-H-B is formed by two electrons
 - (d) the number of electrons in B-H-B is formed by three electrons

8.	Which of the following sulphides is not black?					
	(a) ZnS (b) NiS	(c) CoS	(d) CuS			
9.	For a transition metal with seven electrons the ef	ffective magnetic mor	nent will be			
	(a) 3.16 BM (b) 3.87 BM	(c) 15 BM	(d) 5.92 BM			
10.	Schottky defects form in a crystal					
	(a) when unequal number of cations and anions are missing from the lattice					
	(b) when equal number of cations and anions are missing from the lattice					
	(c) when cations leave its normal positions in the lattice and move in to interstitial sites					
	(d) when the density of the crystal is increased					
11.	Decreasing order of the dipole moments is					
	(a) $AsH_3 > BiH_3 > SbH_3 > NH_3 > PH_3$	(b) $BiH_3 > Sbl$	$H_3 > AsH_3 > NH_3 > PH_3$			
	(c) $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$	(d) $PH_3 > NH$	$_3 > AsH_3 > SbH_3 > BiH_3$			
12.	The metal ions responsible for N_2 fixation by the enzyme nitrogenase are					
	(a) Co and Fe	(b) Cu and Fe	(b) Cu and Fe			
	(c) W and Cu	(d) Fe and Mo				
13.	The speed of the electron is $1.2 \times 10^6 \text{ ms}^{-1}$ and the mass of the electron is $9.1 \times 10^{-31} \text{ Kg}$. Its de Broglië wavelength is					
	(a) $1.46 \times 10^{-10} \text{ m}$	(b) $6.07 \times 10^{-}$	¹⁵ m			
	(c) $6.907 \times 10^{-10} \text{ m}$	(d) 6.071×10^{-1}	$^{-10}$ m			
14.	A radioactive element lost 50% activity in 3 days and 20 hrs. The decay constant of the element is					
	(a) $7.53 \times 10^{-3} \text{ hr}^{-1}$	(b) $5.73 \times 10^{-}$	$^{3} \text{ hr}^{-1}$			
	(c) $7.35 \times 10^{-2} \text{ hr}^{-1}$	(d) 9.73×10^{-1}	$^{3} hr^{-1}$			
15.	Which of the following has a higher crystal field splitting energy (Δ_0)					
	(a) $[Co(CN)_6]^{3-}$	(b) $[Co(NH_3)_6]$	3+			
	(c) $[CoF_6]^{3-}$	(d) $[Co(H_2O)_6]$	3+			
16.	The pH and pOH of 0.1 M H ₂ SO ₄ are	2 0				
	(a) 0.1, 13.9 (b) 0.3, 13.7	(c) 0.7, 13.3	(d) 1.0, 13.0			
17.	The symmetry possessed by a cubic crystal syste	m, all axes being equa	al and all angles at 90° is du	ie to the		
	(a) nine planes of symmetry	(b) six two-fole	d axes (C_2) of symmetry			
	(c) three four-fold axes (C ₄) of symmetry	(d) four three-f	(d) four three-fold axes (C_3) of symmetry			
18.	The Ziegler-Natta catalysts used for the polymerization of olefins is					
	(a) TiO ₂ and Al ₂ O ₃	(b) TiCl ₃ and A	$\mathrm{d}(\mathrm{C}_{2}\mathrm{H}_{5})_{3}$			
	(c) TiCl ₄ and ZnO	(d) PdCl ₄	2 3 3			
19.	A delta (δ) bond formation is known in					
	(a) Na[Re(CO) ₅]	(b) ReO_3				
	(c) $[Re_2Cl_8]^{2-}$	(d) ReOCl ₄				
20.	The tetragonal elongation resulting in the increase of the two trans M-L bond distances occur in octahedra complexes of transition metal ions with a configuration of					
	(a) d^{10} (b) d^7	(c) d^2	(d) d^9			
		(-)	()			

				3		
21.	The increasing order of the observed Infra Red (IR) $v_{CO}(cm^{-1})$ among the isoelectronic complexes will be					
	(a) $[V(CO)_6]^- < Cr$	$(CO)_6 < [Mn(CO)_6]^+$	(b) $[V(CO)_6]^-$ <	$[\mathrm{Mn(CO)}_6]^+ < \mathrm{Cr(CO)}_6$		
	(c) $Cr(CO)_6 < [V(C)]$	-	· ·	$< \operatorname{Cr(CO)}_{6} < [\operatorname{V(CO)}_{6}]^{-}$		
22.	g	In methane which of the following symmetry operations will result in a C_2 symmetry operation?				
	(a) one S_3 and one S_1 operations			(b) two S_4 operations		
	(c) one C ₃ and one C ₁ operation		·	(d) one C ₃ and E operations		
23.	The poisoning in the Minamata Bay in Japan was due to					
	(a) compounds of lead			(b) methylmercury compounds		
	(c) arsenic		(d) uranium			
24.	Resistance of solid C	Resistance of solid C_{60} disappears when formed compounds with				
	(a) K, Rb, Cs	(b) S, Se, Te	(c) Zn, Cd, Hg	(d) Ti, Y, Sc		
25.	Ground state for d ⁴ electronic configuration is					
	(a) ${}^{5}F$	(b) ⁵ D	(c) 2 D	(d) 3F		
26.	Which of the following elements has a more stable oxidation state of III as compared to an oxidation state					
	of I?					
	(a) Al	(b) Ga	(c) Tl	(d) B		
27.	The structure of ICl ₂	is				
	(a) linear		(b) tetrahedral			
	(c) trigonal bipyramic		(d) octahedral			
28.	Which of the following materials show Meissner effect?					
	(a) metallic and paramagnetic		(b) superconducting	(b) superconducting and diamagnetic		
	(c) semiconducting and diamagnetic (d) antiferromagnetic and insulating					
29.	The correct increasing order of Trans effects shown by the σ donor ligands is					
	(a) $OH^- < Br^- < SCN^- < PR_3$			(b) $OH^- < Br^- < PR_3 < SCN^-$		
	(c) $Br^- < PR_3 < OH$			(d) $Br^- < OH^- < SCN^- < PR_3$		
30.	Five experimental determinations of Fe in an iron ore by volumetric method gave the percentages 67.48.					
	67.37, 67.43, and 67.40. The standard, average and probable deviation of the mean are					
	(a) 0.047, 0.031, 0.0		(b) 0.031, 0.036,			
	(c) 0.047, 0.036, 0.0		(d) 0.036, 0.047,	0.031		
31.	The IUPAC name of	the following compound i	S			
	$\begin{array}{c} CH_2CH_2CH_3 \\ CH_3 \mid \\ H_3CC - CHCH_2CH_3 \\ H \\ CH_2CH_2CH_3 \end{array}$					
	H_3CC — $CHCH_2CH_3$					
	CH ₂ CH ₂ CH ₃					
		thylootana	(b) 4-ethyl-5, 5-di	mathylootana		
	(a) 4, 4-dimethyl-5-e	•	•	•		
	(c) 2-methyl-2, 3-dip	ropyipeiitane	(d) 5-ethyl-4, 4-di	memyiociane		

32. In Diels-Alder reaction which of the following will react most slowly with tetracyanoethene.

$$(c) \begin{array}{c} H \\ H \\ H \end{array}$$

33. In the following reaction which will be the preferred product?

- 34. The general molecular formula of sesquiterpenoids is
 - (a) $C_{10}H_{16}$ (b) $C_{10}H_{22}$
- (c) $C_{15}H_{24}$
- (d) $C_{15}H_{32}$

- 35. Which of the following is not true?
 - (a) sun rays contain vitamin D
 - (b) sun's ultraviolet rays assist in the synthesis of vitamin D from a precursor present in our skin
 - (c) vitamin D deficiency could develop brittle bones
 - (d) vitamin D can be ingested through diet or supplements
- 36. Pick out the incorrect match?

(a) Sanger reagent

1-fluoro-2, 4-dinitrobenzene

(b) Edman reagent

phenyl isothiocyanate

(c) Strecker amino acid synthesis

i. aldehyde + HCN; ii. hydrolysis

(d) Merrifield peptide synthesis

polystyrene resin

Which of the following structures will not have detergent properties?

(a) $CH_3(CH_2)_{11}CH_2C - OCH_3$

(b) $CH_3(CH_2)_{11}CH_2CH_2O$ -glucose

(c) CH₃(CH₂)₁₁CH₂CH₂OSO₃H

(d) $CH_3(CH_2)_{11}CH_2CH_2N(CH_3)_3$ CI^-

37.

- 38. Aspirin is
 - (a) salicylic acid

(b) 2-acetoxybenzoic acid

(c) methyl salicylate

- (d) 2-acetoxy benzaldeyde
- 39. The major organic product of aromatic nitration of 1-methyl naphthalene is

$$(d)$$
 VO_2

- Which of the following aldehydes can undergo self condensation? 40.
 - (a) PhCHO

(b) HCHO

(c) $(CH_3)_3CCHO$

- (d) (CH₃CH₂)₂CHCHO
- Cyclamate, an artificial sweetner can be prepared by the reaction of cyclohexylamine and chlorosulfonic 41. acid, followed by the treatment with sodium hydroxide. Which is the structure of this cyclamate?

$$\begin{array}{c|c} (c) & & & \\ & & \\ & & \\ N-S-CI \\ & \\ & \\ \end{array}$$

$$(d) \overbrace{ \begin{array}{c} O \\ H & \parallel \\ N-S-OH \\ \parallel \\ O \end{array} }$$

- 42. Which one of the following is un-reactive to NaBH₄ reduction?
 - (a) CH₃-CHO
- (b) H_3C CH_3 (c) H_3C OMe

43. The functional group in the following compound is

- (a) hemiacetal
- (b) hemiketal
- (c) acetal
- (d) ketal

- 44. The octane rating of gasoline refers to its
 - (a) percentage C_8H_{18} in gasoline

- (b) radiation dose
- (c) percentage of unsaturated hydrocarbons
- (d) ability to resist engine knocking

		· · · · · · · · · · · · · · · · · · ·				
1 5.	The compound CFCl ₃ is used as a/an					
	(a) enzyme	(b) anesthetic				
	(c) gaseous fuel	(d) refrigerant				
46.	An increase in the amount of particulate matter (dust and smoke) in the atmosphere may result in cooler world temperature because					
	(a) more sunlight is absorbed by Earth					
	(b) more IR is emitted into space					
	(c) the dust reflects solar radiation					
	(d) dust reacts with ozone in an exothermic reacti	ion				
1 7.	Polacrylonitrile, characterized by the repeating units made from which of the following monomers?					
	(a) CH ₃ CH ₂ CN	(b) HOCH ₂ CH ₂ CH ₃				
	(c) $CH_3CH = CHCN$	(d) $CH_2 = CHCN$				
18 .	Which of the following compounds could not be u	Which of the following compounds could not be used to prepare a Grignard reagent?				
	(a) Br	(b) Br				
	(c) HOCH ₂ CH ₂ CH ₂ Br	(d) CH ₃ C≡CCH ₂ CH ₂ I				
1 9.	Identify the correct order for placing the following compounds in increasing oxidation state.					
	CH ₃ CH ₂ OH, CH ₃ COOH, CO ₂ , CH ₂ =CH ₂					
	(a) $CH_2 = CH_2 < CH_3CH_2OH < CH_3COOH < CO_2$					
	(b) $CH_2 = CH_2 = CH_3CH_2OH < CH_3COOH < $	CO_2				
	(c) $CH_3CH_2OH < CH_2=CH_2 < CH_3COOH < CH_2$	CO_2				
	(d) $CH_2 = CH_2 < CH_3CH_2OH < CO_2 < CH_3CO$					
50.	Which of the following alkenes will react most rea	dily with HBr?				
	$CH_3CH_2CH=CH_2$ $CH_2=CH_2$	$(CH_3)_2C=CHCH_3$				
	(a) $(CH_3)_2C=CHCH_3$	(b) $CH_2 = CH_2$				
	(c) $CH_3CH_2CH=CH_2$	(d) no difference in reactivity				
51.	In Williamson synthesis, ethers are produced by re	eacting an				
	(a) alcohol with a metal	(b) an alkyl halide with alkoxide				
	(c) alkoxide with a metal	(d) an aldehyde with alkyl halide				
52.	Which reaction produces ethyl alcohol as one of the principal products?					
	(a) an esterification reaction	(b) a neutralization reaction				
	(c) a dehydration reaction	(d) a fermentation reaction				
53.	The maximum number of hydrogen bonds that a r	nolecule of water can have is				
	(a) 1 (b) 2	(c) 3 (d) 4				
54.	The major product of dehydration of neopentyl alcohol is					
	(a) $(CH_3)_2C = CHCH_3$	(b) $(CH_3)_3C$ -CHO				
	(c) $H_2C=CHCH(CH_3)_2$	(d) None of the above				

55.	Arrange the following co	mpounds in order of increasi	ing intensity of infrare	ed absorption by the double bond		
	(least intense first) assuming the same concentration and other conditions.					
	0 					
	(I) $H_3C-C-CH_2CH_3$	(II) $(CH_3)_2C=C(CH_3)_2$	(III) CH ₃ CH ₂ CH=	-CH ₂		
	(a) $I < II < III$		(b) $II < III < I$			
	(c) III < II < I		(d) $II < I < III$			
56.	List the following compo	List the following compounds in order of decreasing acidity				
	(I) CH ₂ CH ₂ OH F	(II) CH ₃ CH ₂ OH	(III) CH ₃ CHOH F	(IV) CH ₂ CH ₂ OH Cl		
	(a) $I > II > III > IV$		(b) $III > IV > I$	> II		
	(c) $III > I > IV > II$		(d) II > IV > I >	III		
57.	A protein that has been i	reversibly denaturated has				
	(a) temporarily lost part	(a) temporarily lost part or all of its secondary or tertiary structure				
		or all of its primary structu	re			
	(c) temporarily lost its a					
~ 0	• •	(d) temporarily lost the hydrogen bonding between nitrogenous bases				
58.		I ₃ are needed to react with				
50	(a) 2 moles	(b) 1 mole	(c) 2/3 mole	(d) 3/2 moles		
59.	(+) Mandelic acid has a second (-)-mandelic acid and 75		vnat would be the of	bserved specific rotation of 25%		
	(a) +79°	(b) 0	(c) –79°	(d) +39.5°		
60.	How many peaks will be observed in the 1H NMR spectrum of 1-chloro-4-methoxy-benzene?					
	(a) 2	(b) 3	(c) 5	(d) 1		
61.	In a tetragonal crystal					
	(a) $a = b = c, \alpha = \beta = 90^{\circ} \neq \gamma$ (b) $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$					
	(c) $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$		(d) $a = b \neq c, \alpha = \beta = 120^{\circ}, \gamma = 90^{\circ}$			
62.	Increasing the temperature of an aqueous solution causes					
	(a) decrease in molality		(b) decrease in molarity			
	(c) decrease in mole fra	(c) decrease in mole fraction		(d) increase in molarity		
63.	The depression in freezing point for 1M Urea, 1M glucose and 1M NaCl are in the ratio					
	(a) 3:2:2	(b) 1:2:3	(c) 1 : 1 : 2	(d) None of these		
64.	The van't Hoff factor <i>i</i> fo solvent is respectively	r a compound which undergo	oes dissociation in on	e solvent and association in other		
	(a) > 1 and > 1	(b) $< 1 \text{ and } > 1$	` ′	, ,		
65.	What will happen if we place Red blood corpuscles (RBC) in (i) 1% (mass/volume) NaCl solution and in (ii) 0.5% (Mass/volume) NaCl solution					
	(a) It will shrink in (i) a	nd swell in (ii)	(b) It will swell in (i) and shrink in (ii)			
	(c) It will swell in both	(i) and (ii)	(d) It will shrink i	n both (i) and (ii)		
66.	The boiling point of carb pressure of Carbon tetra		d the heat of vaporiza	ation is 31 kJ mol ⁻¹ . The vapour		

(a) ~ 0.156 atm

(c) ~ 0.011 atm

(d) $\sim 2.1 \text{ atm}$

(b) $\sim 1.21 \text{ atm}$

67.	The osmotic pressure of a	0.1M monobasic acid have	ving a pH of 2 at 25	5°C is		
	(a) ~ 5.38 atm	(b) $\sim 1.34 \text{ atm}$	(c) ~ 0.882 atm	(d) $\sim 2.69 \text{ atm}$		
68.	The mole fraction of a gas of	dissolved in a solvent is given	ven by Henry's law. l	If the Henry's constant for a gas		
	in water at 298K is 5.55×10^7 torr and the partial pressure of the gas is 200 torr. What is the amount					
	of gas dissolved in 1.0 kg	of water.				
	(a) $\sim 3.6 \times 10^{-7} \text{ mol}$		(b) $\sim 2.5 \times 10^{-5} \text{ r}$			
	(c) $\sim 2.0 \times 10^{-4} \text{ mol}$		(d) $\sim 1.2 \times 10^{-3} \text{ r}$	mol		
69.	The standard electrode potential of three metals X , Y and Z are $-1.3V$, $0.6V$ and $-3.0V$ respectively. The					
	reducing power of these metals follow the order					
	(a) $X > Y > Z$		(b) Y > Z > X			
	(c) $Y > X > Z$		(d) Z > X > Y			
70.	The emf of the given cell $Pt H_2(P_1) H^+(aq) H_2(P_2) Pt$ is given by					
	(a) $(RT/F)\ln(P_1/P_2)$		(b) $(RT/2F)\ln(P_1/P_1)$	2)		
	(c) $(RT/F)\ln(P_2/P_1)$		(d) None of these			
71.	Acetaldehyde (CH ₃ CHO) o	decomposes by second ord	der kinetics with a ra	ate constant of $0.334 \text{ M}^{-1} \text{ s}^{-1}$ at		
	500°C. The time it would take for 80% of the acetaldehyde to decompose in a sample that has an initial					
	concentration of 0.00750 M	M is				
	(a) $\sim 1600 \text{ sec}$	(b) $\sim 1850 \text{ sec}$	(c) $\sim 1000 \text{ sec}$	(d) $\sim 5100 \text{ sec}$		
72.	For a van der Waals gas, the	he inversion temperature i	s given by			
	(a) $T_i = 2aR/b$	(b) $T_i = a / 2Rb$	(c) $T_i = ab/2R$	(d) $T_i = 2a / Rb$		
73.	Heat capacity of a diatomic gas in the low temperature range					
	(a) is independent of its temperature					
	(b) decreases with increase in temperature					
	(c) increases with increase in temperature					
	(d) increases followed by a	a decrease with increase ir	n temperature			
74.	The ionic strength of a solution which is 0.1 m in KCl and 0.2 m in K_2SO_4 is					
	(a) 0.96 m		2	т		
75.	Which of the following fac	ts regarding the viscosity	of a gas is correct			
	(a) Viscosity of gas is due to intermolecular interaction					
	(b) Viscosity of gas is independent of pressure					
	(c) Viscosity of gas decreases with increase in temperature					
	(d) Viscosity of a gas is independent of molecular mass					
76.	Pure water has $[H_3O^+] = 10^{-6}$ moles L^{-1} at 90°C, the value of K_w at this temperature will be					
	2	(b) 10^{-12} M^2	•••	(d) 10^{-6} M^2		
77.	If we titrate NH ₄ OH again	` '	` '			
	(a) ~ 5.5		(c) ~ 8.5	(d) ~ 9.5		
78.	Which of the following ion	` '	` '	` '		
70.	(a) Ca^{2+}	(b) K ⁺	(c) Al ³⁺	(d) Cl ⁻		
79.	` '	` '	` '	` '		
1).	For a diatomic gas at high (a) 7/5	(b) 2/3	(c) $9/7$			
80.	` '	` '	` '	(d) 9/11 gas 'P' The molecular weight		
ου.	The rate of diffusion of methane at a given temperature is twice that of a gas 'P'. The molecular weight of P is					
	(a) 64	(b) 36	(c) 40	(d) 16		
	(a) UT	(0) 30	(0) 40	(u) 10		

- 81. The angular momentum of an electron in 4f orbital is (b) $(12)^{1/2}(h/2\pi)$ (a) $(24)^{3/2}(h/2\pi)$ (c) $(6)^{1/2}(h/2\pi)$ (d) $(2)^{1/2}(h/2\pi)$ In an atomic orbital the sign of lobes indicate 82.
 - - (a) sign of charge

(b) sign of the probability distribution

(c) sign of the wave function

- (d) presence and absence of electrons
- 83. The energy of the electron in the first Bohr orbit for hydrogen is -13.6 eV. Which one of the following is the possible energy of the excited state for electron in Bohr orbits of hydrogen atom?
 - (a) -3.4 eV
- (b) -6.8 eV
- (c) + 1.9 eV
- (d) 13.6 eV
- A particle of mass 2.0×10^{-26} g is in a one dimensional box of length 4.0 nm. The wavelength of the photon 84. emitted when this particles goes from n=3 to n=2 level is
 - (a) 1.11×10^{-5} m

(b) $3 \times 10^{-10} \text{ m}$

(c) 8.96×10^{-6} m

- (d) 2.32×10^{-4} m
- An electrochemical cell can behave like an electrolyte cell when 85.
 - (a) $E_{cell} = 0$
- (b) $E_{cell} > E_{ext}$
- (c) $E_{\text{ext}} > E_{\text{cell}}$ (d) $E_{\text{cell}} = E_{\text{ext}}$

(E_{ext}: external emf)

- Which of the following expressions is not correct (the symbols have their usual meanings) 86.
 - (a) $A = \log(I_0/I)$

(b) $\mu = m_1 m_2 / ((m_1 + m_2))$

(c) $\overline{v} = (1/2\pi c)(\mu/K)^{1/2}$

- (d) $E_v = (v + \frac{1}{2})hv$
- 87. Which of the following expression about logarithm is incorrect
 - (a) $\log(2)^{2n} = n \log 4$

(b) $\log(m+n) = \log m + \log n$

(c) $\log(m/n) = \log m - \log n$

- (d) $\log 1000 = 3$
- Which of the following is not true for X-rays 88.
 - (a) These radiation can ionize gases
 - (b) It causes ZnS to fluoresce
 - (c) These are deflected by electric and magnetic fields
 - (d) Have wavelength shorter than ultraviolet radiations
- 89. Which of the following statement is not correct for the order of a reaction
 - (a) The order of a reaction is the sum of coefficients of the reactants in the balanced chemical equation
 - (b) The order of a reaction is an experimentally determined quantity
 - (c) The order of a reaction can be fractional
 - (d) The order of a reaction can be zero
- Which of the following represent the wave number of radiation lying in the visible region 90.
 - (a) $2 \times 10^4 \text{ cm}^{-1}$

(b) $1 \times 10^7 \text{ cm}^{-1}$

(c) $4 \times 10^9 \text{ cm}^{-1}$

(d) $4 \times 10^{12} \text{ cm}^{-1}$

