M.Sc. ENTRANCE CHEMISTRY **DELHI UNIVERSITY 2015**

1.	$4H_3AsO_3 + 3Na$	$[BH_4]$	$] \rightarrow \dots + H_3 BO_3 + NaOH$
----	-------------------	----------	---

- (a) $As(OH)_3$
- (b) Na_3AsO_4
- (c) AsH_3
- (d) As_2O_3
- 2. Of the following nuclides, the one most likely to be radioactive is
 - (a) ${}_{6}^{14}C$
- (b) ${}^{14}_{7}N$
- (c) ${}_{15}^{31}P$
- (d) $_{30}^{66}Zn$
- Arrange the following metal-carbonyl complexes in the increasing order of the carbonyl stretching frequency: 3.

$$\left[Fe(CO)_4\right]^{2^-}, \left[Mn(CO)_6\right]^+$$
 and $\left[Cr(CO)_6\right]$

(a)
$$[Mn(CO)_6]^+ < [Cr(CO)_6] < [Fe(CO)_4]^{2-}$$
 (b) $[Fe(CO)_4]^{2-} < [Cr(CO)_6] < [Mn(CO)_6]^+$

(b)
$$[Cr(CO)_6] < [Mn(CO)_6]^+ < [Fe(CO)_4]^{2-}$$
 (d) $[Fe(CO)_4]^{2-} < [Mn(CO)_6]^+ < [Cr(CO)_6]$

- The self-indicating silica gel (impregnated with cobalt chloride) turns pink on absorbing moisture and become 4. blue on heating. The pink and blue colours are respectively due to
 - (a) Co^{2+} and Co^{3+}

- (b) $\left[Co(H_2O)_6\right]^{2+}$ and Co_2CO_3
- (c) $[Co(H_2O_6]^{2+}$ and $[CoCl_4]^{2-}$
- (c) $\left[Co(H_2O)_6 \right]^{2+}$ and $\left[Co(H_2O_6) \right]^{3+}$
- 5. Which one of the following molecules doesn't obey the $18e^-$ rule
 - (a) $[Mn(CO)_6]^+$

- (b) $[Fe(CO)_5]$ (c) $[Cr(CO)_5]^{2-}$ (d) $[Mn(CO)_4Cl_2]^{2-}$
- The calculated magnetic moment (B.M) of Eu^{3+} system will be 6.
 - (a) 0
- (b) 3.42
- (c) 7.91
- (d) 3.61
- 7. The acidic strength of the following oxo-acid is in order
 - (a) HOF < HOCl < HOBr < HOI
- (b) HOCl < HOF < HOBr < HOI
- (c) HOI < HOBr < HOCl < HOF
- (c) HOI < HOBr < HOF < HOCl
- Identify the correct IUPAC nomenclature for the given complex : $[Pt(py)_4][Pt(Cl_4)]$ 8.
 - (a) Tetrapyridineplatinum(II) tetrachloroplatinate (II)
 - (b) Tetrachloroplatinate (II) tetrapyridineplatinum(II)
 - (c) Tetrachloro-tetrapyridine bis platinum (II)
 - (d) Platinum(II) tetrapyridinyl platinum(II) tetrachlorate
- 9. A solution containing 2.675 g of $CoCl_2.6NH_3$ (molecular weight = 267.5) is passed through a cation exchanger. The chloride ions obtained in solutions were treated with excess of $AgNO_3$ to give 4.78 g of AgCl. (molecular weight = 143.5). The formula of the complex formed is

(a) $[CoCl_2(NH)_3]_A Cl$

(b) $[CoCl_3(NH)_3)_3$

(c) $\left[Co(NH_3)_6 \right] Cl_3$

- (d) $[CoCl(NH)_3)_5]Cl_7$
- 10. The empirical formula of Layered silicate structures in clays is:
 - (a) SiO_4^{4-}
- (b) $Si_2O_5^{2-}$
- (c) $Si_2O_7^{6-}$
- (d) $(SiO_3)_n^{2n-1}$
- Predict the extrinsic semiconducting properties of WO_3 and CdO11.
 - (a) Both p-type semiconductor
 - (b) Both *n*-type semiconductor
 - (c) WO_3 is *n*-type and CdO is insulator
 - (d) WO_3 is *n*-type and CdO is *p*-type semiconductor
- 12. N_2O_5 have open structure, whereas P_4O_6 has closed cage structure as shown in figure, the formation of open structure in N_2O_5 is due to

- (a) $d_p pp$ mixing
- (b) dp-dp mixing
- (c) pp-pp mixing
- (d) None of these
- 13. When XeF_6 reacts will silica or glass, it gives a colourless liquid of the following composition
 - (a) $SiXeO_{2}F_{6}$

- (d) $XeOF_{\Lambda}$

- 14. Waker's process uses the catalyst:
 - (a) $[PdCl_{A}]^{2-}$
- (b) $[Rh(CO), I,]^-$
- (c) $[Pt(C_2H_4)Cl_3]^-$ (d) $Cp_2TiCl_2 Al(C_2H_5)_3$
- 15. Metal function needed in photosynthesis and respiration are:
 - (a) Zn, Ga and Ca
- (b) Zn, Mg and Ca
- (c) Al, Ga and In
- (d) Mn, Fe, Co and Cu
- Term symbols for d^2 configuration are 3F , 3P , 1D , 1S , 1G and the ground state term is 16.
 - (a) ${}^{3}F_{4}$
- (b) ${}^{3}F_{2}$
- (c) ${}^{1}G_{4}$
- (d) ${}^{3}P_{0}$

- How many vibrational modes are present in NH_3 ? 17.
 - (a) 4
- (b) 6
- (c) 5
- (d) 12
- 18. The charge/size ratio of a cation determines it's polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of cationic species: K^+ , Ca^{2+} , Mg^{2+} , Be^{2+}
 - (a) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$
- (b) $Ca^{2+} < Be^{2+} < Mg^{2+} < K^{+}$
- (c) $Be^{2+} < Mg^{2+} < Ca^{2+} < K^{+}$
- (c) $Mg^{2+} < Ca^{2+} < Be^{2+} < K^{+}$

19. The poly-nuclear complexes (I) and (II) shown below are

Polynuclear complex (I)

Polynuclear complex (II)

(a) Ionization isomer

- (b) Stereoisomer
- (c) Coordination position isomer
- (d) Coordination isomer
- 20. Capacity of anion exchanger resin decrease with
 - (a) decrease in pH
- (b) Increase in pH
- (c) at pH = 7
- (d) Not affected by pH

- 21. Bromination of toluene gives
 - (a) Only 3-bromotoluene as product
 - (b) Only 4-bromotoluene as product
 - (c) Mixture of 2-bromotoluene and 4-bromotoluene as products
 - (d) Mixture of 3-bromotoluene and 4-bromotoluene as products
- 22. SN^1 reaction on optically active substrate mainly gives
 - (a) Racemic product

- (b) Inversion of configuration
- (b) Retention of configuration
- (d) No product
- The electrophilic aromatic substitution proseeds thorough 23.
 - (a) Free radical
- (b) Sigma complex
- (d) carbene
- Thiophene reacts with HCHO in presence of aqueous HCl to give 24.

- 25. Aldose and ketose are differentiated by
 - (a) Tollen's reagents
- (b) Fehling's solution (c) Br_2 water

- Rearrange the following in the order of acid strength 26.
 - (I) Benzoic acid

(II) 4-methoxybenzoic acid

- (III) 2-methoxybenzoic acid
- (a) I < II < III
- (b) III < I < II
- (c) II < I < III
- (d) III < II < I
- 27. Which one of the following reactions will not result in formation of anisole
 - (a) Phenol + dimethyl sulfate in presence of base
 - (b) Sodium phenoxide treated with methyl iodide
 - (c) Reaction of diazomethane with phenol
 - (d) Reaction of methyl magnesium iodide with phenol
- 28. 2- phenylethanol may be prepared by the reaction of phenyl magnesium bromide with
 - (a) HCHO
- (b) CH_3CHO
- (c) CH_3COCH_3

- 29. 2-Acetoxy benzoic acid is known as
- (a) Aspirin
- (b) Paracetamol
- (c) Ibuprofen
- (d) Wintergreen oil

30. For the following reaction

$$OC_2H_5$$
 A OH

Reagent A is

- (a) $LiAlH_4$
- (b) $NaBH_{A}$
- (c) KBH_{A}
- (d) Borane

31. Correct relation between compound I and II is

(a) I and II are identical

(b) I and II are diastereomer

(c) I and II are enantiomer

(d) I and II are meso compounds

32. The correct IUPAC name of the below given compound is

- (a) (4-formylmethyl)-hexane-1, 6-dial
- (b) (3-formylethyl)-pentane-1, 5-dial
- (c) (2-formylethyl)-pentane-1, 5-dial
- (d) (3-formylmethyl)-hexane-1, 6-dial
- 33. The number of signals observed in ${}^{1}H - NMR$ of 1,3-dibromobenzene
 - (a) 3
- (b) 4
- (c) 2
- (d) 6

The fisher projection of meso-tartaric acid represents: 34.

- (a) Skew from
- (b) Staggered form (c) Eclipsed form
- (d) Gauche form

Match the compounds (List I) with correct IR frequency of C-O stretching (List II) 35.

List-I

List-II

(i) 1840 cm⁻¹

(ii) 1740 cm⁻¹

(iii) 1770 cm⁻¹

(a) (P)-(i), (Q)-(ii), (R)-(iii)

(b) (P)-(i), (Q)-(iii), (R)-(ii)

(c) (P)-(iii), (Q)-(ii), (R)-(i)

(d) (R)-(i), (Q)-(ii), (P)-(iii)

36. Among the following compounds, the most basic compound is

37. The reaction of cyclooctyne with $HgSO_4$ in the presence of aqueous H_2SO_4 gives

38. The major product formed on nitration of N,n-dimethylaniline with conc. $H_2SO_4 - HNO_3$ mixture is

39. The major product obtained upon treatment of compound X with H_2SO_4 at $80^{\rm o}$ C

- 40. The compound is
 - (a) anti-aromatic and has no dipole moment
- (b) non-aromatic and has high dipole moment
- (c) aromatic and has high dipole moment
- (d) aromatic and has less dipole moment
- 41. Match list I with List II and select the correct answer

List I

List II

(A) Critical temperature

1. $\frac{a}{Bh}$

(b) Boyle temperature

2. $\frac{2a}{a/Rb}$

(C) Inversion temperature

3. $\frac{T}{T_a}$

(D) Reduced temperature

4. $\frac{8a}{27 Rb}$

	A B C D $A B C D$						
	(a) 2 1 4 3 (b) 4 3 2 1						
	(c) 2 3 4 1 (d) 4 1 2 3						
42.	Which has the maximum value of mean free path?						
	(a) CO_2 (b) H_2 (c) O_2 (d) N_2						
43.	As the supercooled water freezes spontaneously, its temperature rises to 0° C, ΔH for the spontaneous pro-						
	cess is equal to $H_2O(l)$ at $-10^{\circ}C \rightarrow H_2O(l)$ at $0^{\circ}C$						
	(a) enthalpy of fusion (b) ebthalpy of vaporization						
	(c) enthalpy of sublimation (d) Zero						
44.	60 g of urea is dissolved in 1100 g solution. To keep $\Delta T / K_f$ as 1 mol/kg, water separated in the form of ice						
	is						
	(a) $40 \mathrm{g}$ (b) $60 \mathrm{g}$ (c) $100 \mathrm{g}$ (d) $200 \mathrm{g}$						
45.	Relative decrease in vapour pressure of an aqueous NaCl is 0.167. No. of moles of NaCl present is 180 g of						
	H_2O is						
	(a) 2 mol (b) 1 mol (c) 3 mol (d) 4 mol						
46.	Elevation in boiling point of an aqueous urea solution is 0.52° ($K_b = 0.52 mol^{-1} kg$). Hence mole fraction of urea in this solution is (a) 0.982 (b) 0.0567 (c) 0.943 (d) 0.018						
47.	Following are the values of E_a and ΔH for three reactions carried out at the same temperature						
	(I) $E_a = 20kJ \ mol^{-1}, \Delta H = -60 \ kJ mol^{-1}$						
	(II) $E_a = 10kJ \ mol^{-1}, \Delta H = -20kJ \ mol^{-1}$						
	(III) $E_a = 20kJ \ mol^{-1}, \Delta H = +15 \ kJ \ mol^{-1}$						
	If all the three reactions have same frequency factor then factor then fastest reactions are fastest Slowest						
	(a) I						
	(c) II III						
	(d) cannot be predicted						
48.	For reaction $2A + B \to product$, rate law is $-\frac{d[A]}{dt} = k[A]$. At a time when $t = \frac{1}{k}$, concentration of the						
	reactant is: $(C_0 = initial concentration)$						
	(a) $\frac{C_0}{e}$ (b) $\frac{1}{C_0}$ (c) $\frac{C_0}{e^2}$ (d) $\frac{1}{C_0}$						
49.	Acid hydolysis of ester is first-order reaction and rate constant is given by						
	$k = \frac{2.303}{t} \log \frac{V_{\infty} - V_0}{V_{\infty} - V_t}$						
	where V_0, V_t and V_{∞} are the volumes of standard NaOH to neutralize acid present at a given time; if ester is						

50% hydrolysed then:

(a) $V_{\infty} = V_t$

(b) $V_{\infty} = (V_t - V_0)$ (c) $V_{\infty} = 2V_t - V_0$ (d) $V_{\infty} = 2V_t + V_0$

50.	Temperature of 1 mol (a) R	of gas is increased by 1° (b) 2R	at constant pressure. W	Vork done: (d) 3R
51.	K_{sp} of $Mg(OH)_2$ is 1	1.8×10^{-11} at 30°C. Its m	olar solubility is	at pH = 12
		(b) $1.8 \times 10^{-9} M$		
52.	For the half cell Cl^- /	$Pt(Cl_2)$, the value of (B	$(E-E^0)$:	
	(a) increases as $[Cl^-]$	increases	(b) decreases as $[Cl^{-}]$	increases
	(c) remains constant a	as $[Cl^-]$ increases	(d) cannot be predicat	ed
53.	If E_0 is the zero point energy in the $n = 2$ state		scillator of frequency v	and h is the planck's constant than its
	(a) $(E_0 + hv)$	(b) $2E_0$	(c) $4E_0$	(d) $(E_0 + 2hv)$
54.	The molecules which a	are IR-inactive but ramar	nactive is:	
	(a) N_2	(b) HCl	(c) SO_2	(d) Protein
55.	A thermos bottle cont coffee as system	aining coffee is vigorous	sly shaken and therby th	e temp of the coffee rises. Regard the
	(a) $Q = 0; W = -\text{ve } \Delta$	ΔU is + ve	(b) $Q = 0; W = +ve;$	ΔU is + ve
	(c) $Q = 0; W = -\text{ve } \Delta$	ΔU is – ve	(d) $Q = 0; W = +ve$;	ΔU is – ve
56.	Conjugate base of H_2	, is		
	(a) H^{+}	(b) H_3^+	(c) H ⁻	(d) H_3^{-}
57.		be described as a closes nula of lithium selenide is		enide ions with lithium ions in all the
	(a) Li_2Se	(b) Li_2Se	(c) LiSe ₂	(d) Li_3Se
58.	The pK_a of an amino	acid is 9.15. At what pl	Hamino acid is 5% disso	ociated?
	(a) 9.15		(c) 9.44	(d) 7.87
59.	For the equilibrium N	$H_2COONH_4(s) \rightleftharpoons 2NR$	$H_3(g) + CO_2(g)$	Y
	ρ_{CO_2} =1 atm at 100°C.	Hence equilibrium cons	tant is:	
	(a) $1atm^3$	(b) $2 atm^{3}$	(c) $4atm^3$	(d) $3atm^3$
50.	For the following equil	ibrium $NH_2CO_2NH_4(s)$	$\Rightarrow 2NH_3(g) + CO_2(g)$	·)
	K_p is found to be 0.5	at 500 K. Hence the par	rtial of NH_3 and CO_2 ar	re respectively
	(a) 2.0 and 1.0	(b) 1.0 and 2.0	(c) 1.0 and 0.5 atm	

A 1	MO		$\mathbb{R}\mathbb{R}$		2	7
Aì		w		K	27.	1

1. (c)	2. (a)	3. (b)	4. (c)	5. (d)	6. (a)	7. (c)
8. (a)	9. (c)	10. (b)	11. (b)	12. (c)	13. (d)	14. (a)
15. (d)	16. (b)	17. (b)	18. (a)	19. (c)	20. (b)	21. (c)
22. (a)	23. (b)	24. (c)	25. (c)	26. (c)	27. (d)	28. (d)
29. (a)	30. (a)	31. (b)	32. (d)	33. (a)	34. (c)	35. (c)
36. (a)	37. (d)	38. (c)	39. (b)	40. (c)	41. (d)	42. (b)
43. (d)	44. (a)	45. (b)	46. (d)	47. (*)	48. (a)	49. (c)
50. (a)	51. (d)	52. (b)	53. (d)	54. (a)	55. (a)	56. (c)
57. (a)	58. (d)	59. (c)	60. (c)			

